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      2020 
1.  Consider the set V of all n n  real magic squares. Show that V is a vector space overR .Give examples of 

two distinct 2 2 magic squares.         [10 Marks] 

2. Let ( )2:T M R be the vector space of all 2 2 real matrices. Let 
1 1

4 4
B

− 
=  − 

.  

Suppose ( ) ( )2 2:T M R M R→  is a linear transformation defined by ( )T A BA= .  

Find the rank and nullity of T . Find a matrix A which maps to the null matrix.    [10 Marks] 

3. Define an n n matrix as 2 . ,TA I uu= − where u is a unit column vector  

(i) Examine if A is symmetric.  

(ii) Examine if A is orthogonal.  

(iii) Show that trace ( ) 2A n= − . 

(iv) Find 3 3A   when 

1

3
2

3
2

3

u

 
 
 
 =
 
 
 
 

         [20 Marks] 

 

4. Let F be a subfield of complex numbers and T a function from 
3 3F F→ defined by 

= + + − − + −1 2 3 1 2 3 1 2 1 2 3( , , ) ( 3 ,2 , 3 )T x x x x x x x x x x x . What are the conditions on , ,a b c such that 

( , , )a b c be in the null space of ?T find the nullity of T .      [15 Marks] 

5. Let 
 
 = −
 
 

1 0 2

2 1 3

4 1 8

A   and 

− 
 = −
 − − 

11 2 2

4 0 1

6 1 1

B  

(i) Find AB   

(ii) Find det ( )A and det ( )B  

(iii) Solve the following system of linear equations:  

 2 3x z+ =    2 3 3x y z− + =   4 8 14x y z+ + =      [15 Marks] 

2019 
6.  Let 2 2:T R R→ be a linear map such that (2,1) (5,7)T = and (1,2) (3,3)T = If A is the matrix 

corresponding to T with respect to the standard bases 1 2, ,e e  then find rank    [10 Marks]  

7. If 

1 2 1

1 4 1

3 0 3

A
 
 −
 − 

  and  

2 2 1

1 1 0

2 1 1

B
 
 −
 − 

 then show that 36AB I= . Use this result to solve the following 

system of equations. 2 5,  0,  2 1x y z x y x y z+ + = − = + − =        [10 Marks]  

8. Let A and B be two orthogonal matrices of same order and det A+ det 0B = Show that A B+ is a 

singular matrix.            [15 Marks] 
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9. Let  

5 7 2 1

1 1 8 1

2 3 5 0

3 4 3 1

A

 
 −

=  
 

− 

 

(i) Find the rank of matrix A  

(ii) Find the dimension of the subspace 

1

4 2
1 2 3 4

3

4

( , , , ) 0

x

x
V x x x x R A

x

x

  
   

=  =  
   

   

  [15+5=20 Marks] 

10. State the Cayley-Hamilton theorem. Use this theorem of find 100A where 

1 0 0

1 0 1

0 1 0

A
 
 =
 
 

  [15 Marks]  

2018 
11.  Let A be a 3 2 matrix and B a 2 3 matrix. Show that .C A B=  is a singular matrix.  [10 Marks] 

12.  

13. Express basis vectors 1 (1,0)e = and 2 (0,1)e = as linear combinations of 1 (2, 1) = − and 2 (1,3). =

            [10 Marks] 

14. Show that if A and B are similar n n  matrices, then they have the same Eigen values.   [12 Marks] 

15. For the system of linear equations 3 2 1,  5 3 8,  2 5 7x y z y z x y z+ − = − + = − − − =  determine which of the 

following statements are true and which are false:    

     (i) The system has no solution. 

      (ii) The system has a unique solution. 

      (iii) The system has infinitely many solutions.       [13 Marks] 

      2017 

16.  Let
2 2

.
1 3

A
 

=  
 

 Find a non-singular matrix P such that 1−P AP  is diagonal matrix.      [10 Marks] 

17. Show that similar matrices have the same characteristic polynomial.         [10 Marks] 
18. Suppose U  and W are district four dimensional subspaces of a vector space ,V  where dim 6.V =

Find the possible dimensions of subspace U W       [10 Marks] 

4. Consider the matrix mapping 4 3: ,A R R→ where 

1 2 3 1

1 3 5 2

3 8 13 3

A

 
 

= − 
 − 

. Find a basis and dimension 

of the image of A and those of the kernel A .      [15 Marks] 

5. Prove that distance non-zero eigenvectors of a matrix are linearly independent.    [10 Marks] 

6. Consider the following system of equation in , ,x y z 2 2 1,x y z+ + = 3 3,x ay z+ + = 11x y az b+ + =  

(i) For which values of a  does the system have a unique?  

(ii) For which of values ( , )a b does the system have more than one solution?   [15 Marks] 
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   2016 

19. (i) Using elementary row operations, find the inverse of

1 2 1

1 3 2

1 0 1

A

 
 

=
 
       

[6 Marks] 

(ii)  If  

1 1 3

5 2 6

2 1 3

A

 
 

=
 
 − − − 

 then find 14 3 2 .A A I+ −       [4 Marks] 

20. (i)  Using elementary row operation find the condition that the linear equations have a solution   

  

2

2 7 3

3 5 2

x y z a

x y z b

x y z c

− + =

+ − =

+ − =

        [7 Marks]  

(ii)  If  = + − =1 {( , , ) 0},W x y z x y z = + − =2 {( , , ) 3 2 0},W x y z x y z

 = − + =3 {( , , ) 7 3 0}W x y z x y z

  

then find 1 2 3dim( )W W W and +1 2dim( )W W [3 Marks] 

21. (i)  If 2( )M R  is space of real matrices of order2 2  and 2( )P x  is the space of real polynomials 

 of degree at most 2, then find the matrix representation of 2 2: ( ) ( )T M R P x→  such that 

 2( ) ( )
a b

T a b c a d x b c x
c d

  
= + + + − + +  

  
, with respect to the standard bases of 2( )M R  

 and 2( )P x further find null space of T      [10 Marks] 

  (ii)   If 2 3: ( ) ( )T P x P x→  is such that 
0

( ( )) ( ) 5 ( ) ,
x

T f x f x f t dt= +   then choosing

 2{1,1 ,1 }x x+ −  and 2 3{1, , , }x x x  as bases of 2( )P x  and 3( )P x respectively find the matrix 

 of T.            [6 marks] 

7. (i) If

1 1 0

1 1 0

0 0 1

A

 
 

=
 
  

, then find the Eigen values and Eigenvectors of A.   [6 Marks] 

 (ii)  Prove that Eigen values of a Hermitian matrix are all real.     [8 Marks] 

8. If 

1 1 2

2 1 1

1 2 3

A

− 
 

= − −
 
  

 is the matrix representation of a linear transformation 2 2: ( ) ( )T P x P x→  

with respect to the bases {1 , (1 ), (1 )}x x x x x− − + and 2{1,1 ,1 }x x+ +  then find T. [18 Marks] 

 

     2015 
 

9. The vectors 
1 2 3(1,1,2,4), (2, 1, 5,2), (1, 1, 4,0)V V V= = − − = − − and 

4 (2,1,1,6)V = are linearly 

independent. Is it true? Justify your answer.       [10 Marks] 
10. Reduce the following matrix to row echelon form and hence find its rank: 
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1 2 3 4

2 1 4 5

1 5 5 7

8 1 14 17

 
 
 
 
 
 

          [10 Marks] 

11. If matrix 

1 0 0

1 0 1

0 1 0

A

 
 

=
 
  

then find 30A        [12 Marks] 

12. Find the Eigen values and Eigen vectors of the matrix 

1 1 3

1 5 1

3 1 1

 
 
 
  

    [12 Marks] 

13. Let 3V R=  and ( ),T A V for all ( ),ia A V  be defined by 

1 2 3 1 2 3 1 2 3 1 2 3( , , ) (2 5 , 3 , 2 3 )T a a a a a a a a a a a a= + + − + − + + . What is the matrixT relative to the 

basis 
1 2 3(1,0,1), ( 1,2,1), (3, 1,1)?V V V= = − = −       [12 Marks] 

14. Find the dimension of the subspace of 4 ,R  spanned by the set

 (1,0,0,0),(0,1,0,0),(1,2,0,1),(0,0,0,1) . Hence find its basis.    [12 Marks] 

 

      2014        

15. Find one vector in 3R which generates the intersection of V and ,W  where V  is the -xy plane  and ,W  

is the space generated by the vectors (1,2,3) and (1, 1,1)−      [10 Marks] 

16. Using elementary row or column operations, find the rank of the matrix   

0 1 3 1

0 0 1 1

3 1 0 2

1 1 2 0

− − 
 
 
 
 

− 

          [10 Marks] 

17. Let V and W  be the following subspaces of
4R : ( ) , , , : 2 0V a b c d b c d= − + = and

( ) , , , : , 2W a b c d a d b c= = = . Find a basis and the dimension of (i) V  (ii)  W  (iii) V W   [15 Marks] 

18. Investigate the values of  and so that the equations 6,x y z+ + =  2 3 10,x y z+ + =  

2x y z + + =  have (i) no solution (ii) unique solution, (iii) an infinite number of solutions. [10 Marks] 

19. Verify Cayley-Hamilton theorem for the matrix 
1 4

2 3
A

 
=  
 

and hence find its inverse. Also, find the 

matrix represented by 
5 4 3 24 7 11 10A A A A A I− − + − −      [10 Marks] 

20. Let

2 2 3

2 1 6

1 2 0

A

− − 
 

= −
 
 − − 

. Find the Eigen values of A and the corresponding Eigen vectors. [8 Marks] 

21. Prove that Eigen values of a unitary matrix have absolute value 1.    [7 Marks] 
 

      2013 
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22. Find the inverse of the matrix: 

1 3 1

2 1 7

3 2 1

A

 
 

= −
 
 − 

 by using elementary row operations. Hence solve the 

system of linear equations  3 10x y z+ + =  2 7 12x y z− + =  3 2 4x y z+ − =   [10 Marks] 

23. Let Abe a square matrix and *A be its ad joint, show that the Eigen values of matrices *AA and *A A

are real. Further show that ( ) ( )trace * trace *AA A A=         [10 Marks] 

24. Let 
nP  denote the vector space of all real polynomials of degree at most n and 

2 3:T P P→ be linear 

transformation given by ( ) 20
( ) ( ) ,  ( )

x
T f x p t dt p x P=  . Find the matrix of T with respect to the bases 

 21, ,x x and  2 31, ,1 ,1x x x+ + of 
2P and 

3P respectively.  Also find the null space of T  [10 Marks] 

25. Let V be an -n dimensional vector space and :T V V→ be an invertible linear operator. If 

 1 2, ,... nX X X = is a basis of ,V  show that  1 2' , ,... nTX TX TX = is also a basis of V  [8 Marks]  

26. Let 2

2

1 1 1

1

1

A  

 

 
 

=
 
  

where ( 1)   is a cube root of unity. If
1 2 3, ,   denote the Eigen values of 2,A

show that 2 31
9  + +            [8 Marks]  

27. Find the rank of the matrix 

1 2 3 4 5

2 3 5 8 12

3 5 8 12 17

3 5 8 17 23

8 12 17 23 30

A

 
 
 
 =
 
 
  

     [8 Marks] 

28. Let Abe a Hermitian matrix having all distinct Eigen values
1 2, ,.... n   .  If 

1 2, ,... nX X X  are corresponding 

Eigen vectors then show that the n n  matrix Cwhose 
thk  column consists of the vector 

nX is non-

singular.                [8 Marks] 

29. Show that the vectors 
1 2(1,1 , ), ( , ,1 )X i i X i i i= + = − − and 

3 (0,1 2 ,2 )X i i= − − in 
3C  are linearly 

independent over the field of real numbers but are linearly dependent over the field of complex 
numbers.            [8 Marks] 

      2012 

30. Prove or disprove the following statement: If  1 2 3 4 5, , , ,B b b b b b= is a basis for 5 and V is a two-

dimensional subspace of  5,  then V has a basis made of two members ofB .    [12 Marks] 

31. Let 3 3:T  be the linear transformation defined by

( , , ) ( 2 3 ,2 5 4 , 4 )T            = + − + − + + . Find a basis and the dimension of the image 

of T and the kernel of T          [12 Marks] 
32. Let V be the vector space of all 2 2  matrices over the field of real numbers. Let W  be the set consisting 

of all matrices with zero determinant. Is W a subspace of ?V  Justify your answer?   [8 Marks] 
33. Find the dimension and a basis for the spaceW  of all solutions of the following homogeneous system 

using matrix notation:  

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

2 3 2 4 0

2 4 8 9 0

3 6 13 4 14 0

x x x x x

x x x x x

x x x x x

+ + − + =

+ + + + =

+ + + + =

        [12 Marks] 



 

Reputed Institute for Maths Optional of UPSC, IAS, IFoS (IFS), Civil Services and State PCS Exams  Page 7 

34. (i) Consider the linear mapping 2 2:f by ( , ) (3 4 ,2 5 )f x y x y x y . Find the matrix A

 relative to the basis (1,0),(0,1) and the matrix B  relative to the basis (1,2),(2,3) [12 Marks] 

(ii) If  is a characteristic root of a non-singular matrix ,A  then prove that 
A


 is a 

 characteristic root of Adj A         [8 Marks] 

35. Let 

1 2

2 1

2 1 2

i i

H i i

i i

+ 
 

= − − 
 − + 

be a Hermitian matrix. Find a non-singular matrix P such that

TD P HP=  is diagonal.          [20 Marks] 
 
 
 
 

      2011 

36. Let A be a non-singular n n , square matrix. Show that A . ( ) =adjA A .
nI Hence show that

( )
( )

2
1−

=
n

adj adjA A           [10 Marks] 

37. Let 

1 0 1 2

3 4 5 , , 6

0 6 7 5

−     
     

= = =
     
          

x

A X y B

z

Solve the system of equations given by =AX BUsing the 

above, also solve the system of equations =TA X B where TA denotes the transpose of matrix A. 
            [10 Marks] 

38. Let
1 2, ,.....  n

 be the Eigen values of a n n  square matrix A with corresponding Eigen vectors

1 2, ,..... nX X X . If B is a matrix similar to show that the Eigen values of B is same as that of A. Also 

find the relation between the Eigen vectors of B and Eigen vectors of A.    
            [10 Marks] 

39. Show that the subspaces of 3 spanned by two sets of vectors ( ) ( ) 1,1, 1 , 1,0,1− and

( ) ( ) 1,2, 3 , 5,2,1−  are identical. Also find the dimension of this subspace.   (10Marks)  

40. Find the nullity and a basis of the null space of the linear transformation ( ) ( )4 4
: →A given by the 

matrix

0 1 3 1

1 0 1 1

3 1 0 2

1 1 2 0

− − 
 
 =
 
 

− 

A .         [10 Marks] 

41. Show that the vectors ( ) ( )1,1,1 , 2,1,2 and ( )1,2,3 are linearly independent in ( )3 . Let ( ) ( )3 3
→  be 

a linear transformation defined by ( ) ( ), , 2 3 , 2 5 ,2 4 6= + + + + + +T x y z x y z x y z x y z Show that the 

images of above vectors under are linearly dependent. Given the reason for the same. 

(ii)Let 

2 2 2

1 1 1

1 3 1

− 
 

=
 
 − 

A and C be a non-singular matrix of order 3 3 . Find the Eigen values of the 

matrix 3B where 1−=B C AC .          [10 Marks] 

      2010        
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42. If
1 2 3, ,.....    are the Eigen values of the matrix

26 2 2

2 21 4

44 2 28

− 
 

 =
 
  

 show that 2 2 2

1 2 3 1949  + +   

            [12 Marks] 

43. What is the null space of the differentiation transformation : n n

d
P P

dx
→  where 

nP  is the space of all 

polynomials of degree n  over the real numbers? What is the null space of the second derivative 

as a transformation of? What is the null space of the kith derivative 
nP ?     

            [12 Marks]  

44. Let. 
4 2 1

0 1 3

 
=  
 

M Find the unique linear transformation 3 3: →T so that M is the matrix of T 

with respect to the basis ( ) ( ) ( ) 1 2 31,0,0 1,1,0 1,1,1 = = = =v v v of 3 and

( ) ( ) 1 2' 1,0 , 1,1 = = =w w  of 2 .Also find ( ), ,T x y z .       

            [20 Marks] 
45. Let A and B be n nmatrices over reals. Show that B is invertible if −I AB  is invertible. Deduce 

thatandhave the same Eigen values.       [20 Marks] 

46. (i) In the space nR determine whether or not the 1 2 2 3 1 1, ,......, ,n n ne e e e e e e e−− − − −  set is 

linearly independent.  

(ii) Let T be a linear transformation from a vector V space over reals into V such that 2− =T T I  
Show that is invertible.           [20 Marks] 
 

       2009 

47. Find a Hermitian and skew-Hermitian matrix each whose sum is the matrix.

2 3 1

1 2 3 2

1 4 5

− 
 

+
 
 − + 

i

i

i i

 

             [12 
Marks] 

48. Prove that the set V of the vectors ( )1 2 3 4, , ,x x x x  in which 4  satisfy the equation

1 2 3 4, 0+ + + =x x x x and
1 2 3 42 3 0,+ − + =x x x x is a subspace of 4 .What is dimension of this 

subspace? Find one of its bases.               [12 Marks] 

49. Let ( )( )( ) 1,1,0 1,01 0,1,1 =  and ( ) ( )( ) ' 2,1 , 1,2,1 1,1,1 = −  be the two ordered bases of 3R . Then 

find a matrix representing the linear transformation 3 3: →T R R which transforms into ’. Use 

this matrix representation to find ( )T x , where ( )2,3,1=x .     [20 Marks]   

50. Find a 2 2 real matrix A which is both orthogonal and skew-symmetric. Can there exist a3 3 real 
matrix which is both orthogonal and skew-symmetric? Justify your answer.   (20Marks 

51. Let 4 3: →L be a linear transformation defined by ( ))1 2 3 4, , ,=L x x x x

( )3 4 1 2 3 2 4 1, ,= + − − − −x x x x x x x x  . Then find the rank and nullity of L. Also, determine null space 

and range space of L.                           [20 Marks] 

52. Prove that the set V of all 3 3 real symmetric matrices form a linear subspace of the space of all
3 3  real matrices. What is the dimension of this subspace? Find at least of the bases for V.           
            [20 Marks] 

      2008 
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53. Show that the matrix A is invertible if and only if the ( )adj A  is invertible. Hence find ( )adj A  

            [12 Marks] 
54. Let S be a non-empty set and let V denote the set of all functions from S into R. Show that V is 

vector space with respect to the vector addition ( )( ) ( ) ( )+ = +f g x f x g x  and scalar multiplication

( )( ) ( ). =c f x cf x            [12 Marks]  

55. Show that ( ) ( ) ( ) 1,0,0 , 1,1,0 , 1,1,1 =  is a basis of. 3R Let 3 3: →T R R be a linear transformation 

such that ( ) ( ) ( ) ( )1,0,0 1,0,0 , 1,.1,0 1,1,1= =T T and ( ) ( )1,1,1 1,1,0=T .Find ( ), ,T x y z    

[15 Marks]  

56. Let A be a non-singular matrix. Show that if 2 ..... 0+ + + + =nI A A A  then 1− = nA A .  
            [15 Marks] 

57. Find the dimension of the subspace of 4R spanned by the set

( )( )( ) ( ) 1,0,0,0 0,1,0,0 1,2,0,1 , 0,0,0,1 . Hence find a basis for the subspace.   

            [15 Marks] 

      2007 

58. Let S be the vector space of all polynomials, ( )p x with real coefficients, of degree less than or equal 

to two considered over the real field R such that ( )0p and ( )1 0=p .Determine a basis for S and 

hence its dimension.           
            [12 Marks] 

59. Let T be the linear transformation from 3R to 4R define by

( ) ( )1 2 3 1 2 3, 1 2, 1 3 1 2 3, , 2 , ,3 2= + + + + =T x x x x x x x x x x x x x  for each ( ) 3

1 2 3, , x x x R Determine a basis 

for the Null space of T. What is the dimension of the Range space of T?    
            [12 Marks] 

60. Let W be the set of all 3 3 symmetric matrices over R does it from a subspace of the vector space 

of the3 3 matrices over R ? In case it does, construct a basis for this space and determined its 

dimension            [15 Marks] 

61. Consider the vector space ( ) :=X p x is a polynomial of degree less than or equal to 3 with real 

coefficients. Over the real field R define the map : →D X X by ( )( ) 2

1 2 3: 2 3= + +Dp x P P x P x  where

( ) 2 3

0 1 2 3:= + + +p x P Px P x p x  is D a linear transformation on X? If it is then construct the matrix 

representation for D with respect to the order basis 2 31, , ,x x x for X.    [15 Marks] 

62. Reduce the quadratic form ( ) 2 2 2, , : 2 4 4 7= + − − +q x y z x y xz yz z to canonical form. Ss positive 

definite?            [15 Marks] 

      2006 
63. Let V be the vector space of all 2 2 matrices over the field F. Prove that V has dimension 4 by 

exhibiting a basis for V.         [12 Marks] 

64. State Cayley-Hamilton theorem and using it, find the inverse of
1 3

2 4

 
 
 

.       [12 Marks]  

65. If 2 2: →T R R is defined by ( ) ( ), 2 3 ,= − +T x y x y x y compute the matrix of T relative to the basis

( ) ( ) 1,2 , 2,3            [15 Marks] 
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66. Using elementary row operations, find the rank of the matrix

3 2 0 1

0 2 2 1

1 2 3 2

0 1 2 1

− − 
 
 
 − − −
 
 

.    

            [15 Marks] 
67. Investigate for what values of and the equations 

  

6

2 3 10

2  

+ + =

+ + =

+ + =

x y z

x y z

x y z

 

 Have- 
(i) no solution;  
(ii) a unique solution; 
(iii) infinitely many solutions         [15 Marks] 

68. Find the quadratic form ( , )q x y corresponding to the symmetric matrix
5 3

3 8

− 
=  

− 
A   Is this 

quadratic from positive definite? Justify your answer.     [15 Marks]  

     

     2005 
 

69. Find the values of k for which the vectors ( ) ( ) ( )1,1,1,1 , 1,3, 2, , 2,2 2, 2,3 1− − − − −k k k k and

( )3, 2, 3,2 1+ − +k k  are linearly independent in 4R .      [12 Marks]  

70. Let V be the vector space of polynomials in x of degree n over R. Prove that the set 21, , ,..., nx x x  

is a basis for the set of all polynomials in x.        [12 Marks]  

71. Let T be a linear transformation on 3R whose matrix relative to the standard basis of 3R is

2 1 1

1 2 2

3 3 4

− 
 
 
  

 Find the matrix of T relative to the basis ( ) ( ) ( ) 1,1,1 , 1,1,0 , 01,1 = .  [15 Marks]  

72. Find the inverse of the matrix given below using elementary row operations only: 

2 0 1

5 1 0

0 1 3

− 
 
 
  

           [15 Marks] 

73. If S is a skew-Hermitian matrix, then show that is a unitary matrix. Also show that 

( )( )
1−

= + −A I S I S every unitary matrix can be expressed in the above form provided -1 is not an 

Eigen value of A.          [15 Marks]  

74. Reduce the quadratic form 2 2 2

1 2 3 1 2 2 3 3 16 3 3 4 2 4+ + − − +x x x x x x x x x  to the sum of squares. Also find 

the corresponding linear transformation, index and signature.     
            [15 Marks] 

      2004 

75. Let S be space generated by the vectors ( ) ( ) ( ) 0,2,6 , 3,1,6 , 4, 2, 2− − what is the dimension of the 

space S? Find a basis for S.         [12 Marks] 
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76. Show that 3: →f R IR is la linear transformation, where ( ), , 3= + −f x y z x y z  what is the 

dimension of the Kernel? Find a basis for the Kernel.   

77. Show that the linear transformation form 3IR to 4IR which is represented by the matrix

1 3 0

0 1 2

2 1 1

1 1 2

 
 

− 
 
 
− 

 is one-to-one. Find a basis for its image.     [12 Marks] 

78. Verify whether the following system of equation is consistent 

 

3 5

2 5 0

4 4

+ =

− + − =

− + + =

x z

x y z

x y z

          [15 Marks]  

79. Find the characteristic polynomial of the matrix
1 1

1 3

 
=  

− 
A  Hence find 1−A and 6A   (15Marks) 

80. Define a positive definite quadratic form. Reduce the quadratic form to canonical form. Is this 
quadratic form positive definite?          [15 Marks]  

      2003      
81. Let S be any non-empty subset of a vector pace V over the field F. Show that the set

 1 1 2 2 : 1 2 1 2... : , ,...., , , ,......, ,     + + +   n n n na a a a a a F S n N  is the subspace generated by S.

            [12 Marks] 

82. If

2 1 1

0 1 0

1 1 2

 
 

=
 
  

 then find the matrix represented by

10 9 8 7 6 5 4 32 10 14 6 3 15 21 9 1− + − − + − + + −A A A A A A A A A .      [12 Marks]  
83. Prove that the Eigen vectors corresponding to distinct Eigen values of a square matrix are linearly 

independent.            [15 Marks] 

84. If H is a Hermitian matrix, then show that ( ) ( )
1−

= + −A H iI H iI is a unitary matrix. Also, so that 

every unitary matrix can be expressed in this form, provided 1 is not an Eigen value of A.  
            [15 Marks]  

85. If

6 2 2

2 3 1

2 1 3

− 
 

= − −
 
 − 

A  then find a diagonal matrix D and a matrix B such that '=A BDB where B’ 

denotes the transpose of B.         [15 Marks]  
86. Reduce the quadratic form given below to canonical form and find its rank and signature

2 2 2 24 9 12 6 4 2 6 .+ + + − + − − −x y z u yz zx xy xu zu        [15 Marks]  

      2002 

87. Show that the mapping 3 3: →T R R where ( ) ( ), , , ,= − − +T a b c a b b c a c is linear and  non-singular

            [12 Marks] 
88. A square matrix A is non-singular if and only if the constant term in its characteristic polynomial is 

different from zero.           [12 Marks]  

89. Let 5 5→R R  be a linear mapping given by ( ) ( ), , , , , , , 2 ,= − + + +T a b c d e b d e b d e b e Obtain based 

for its null space and range space.         [15 Marks] 
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90. Let A be a real 3 3 symmetric matrix with Eigen values0, 0 and 5 If the corresponding Eigen-vectors 

are ( ) ( )2,0,1 , 2,1,1  and ( )1,0, 2− then find the matrix A.      

            [15 Marks] 

91. Solve the following system of linear equations

1 2 3 4

1 2 3 4 5

1 2 3 4 5

2 3 4 1

3 5 5 2 0

2 2 3 4 17,

− − + = −

− + + − − =

+ − + − =

x x x x

x x x x x

x x x x x

  [15 Marks] 

92. Use Cayley-Hamilton theorem to find the inverse of the following matrix:

0 1 2

1 2 3

3 1 1

 
 
 
  

  [15 Marks] 

 

     2001 

 

93. Show that the vectors ( ) ( )1,0 1 , 0, 3,2− − and ( )1,2,1 form a basis for the vector space ( )3R R  

            [12 Marks] 

94. If is a characteristic root of a non-singular matrix A then prove that


A
is a characteristic root of

.Adj A                         [12 Marks] 

95. If

1 0 0

1 0 1

0 1 0

 
 

=  
 
 

A  show that for every integer 2 23, − = + −n nn A A A I Hence determine 50A .  

            [15 Marks] 
96. When is a square matrix A said to be congruent to a square matrix B? Prove that every matrix 

congruent to skew-symmetric matrix is skew symmetric.     [15 Marks] 

97. Determine an orthogonal matrix P such that is a diagonal matrix, where

7 4 4

4 8 1

4 1 8

 
 

= − − 
 − − − 

[15 Marks] 

98. Show that the real quadratic form ( ) ( )
22 2 2

1 2 1 2 = + + + − + +n nn x x x x x x  in n variables is positive 

semi-definite.            [15 Marks] 

      2000 
 

99. Let V be a vector space over R and ( ) , , ,= T x y x y v Let. Define addition in component wise and 

scalar multiplication by complex number + i by ( )( ) ( ), ,      + = + +  i x y x y y y R  

Show that T is a vector space over C.        [12 Marks] 

100. Show that if   is a characteristic root of a non-singular matrix A then 1− is a characteristic root of
1−A              [15 Marks] 

101. Prove that a real symmetric matrix A is positive definite if and only = tA BB  if for some non-singular 

matrix. B Show also that

1 2 3

2 5 7

3 7 11

 
 

=  
 
 

A  is positive definite and find the matrix B such that = tA BB

Here stands for the transpose of.                    [15 Marks] 
102. Prove that a system =AX B  if non-homogeneous equations in unknowns have a unique solution 

provided the coefficient matrix is non-singular.       [15 Marks] 
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103. Prove that two similar matrices have the same characteristic roots. Is its converse true? Justify your 
claim.            [15 Marks] 

104. Reduce the equation 2 2 2 2 2 2 2 6 0+ + − − + + − − + =x y z xy yz zx x y z  into canonical form and 

determine the nature of the quadratic.       [15 Marks] 

      1999 
 
105. Let V be the vector space of functions from R to R (the real numbers). Show that f, g, h in V are 

linearly independent where 2 2( ) , ( )tf t e g t t= = and ( )h t t= .     [20 Marks] 

106. If the matrix of a linear transformation T on ( )2 V R with respect to the basis, then what is the matrix 

of with respect to the ordered basis ( ) ( ) 1,0 , 0,1=B is 
1 1

1 1

 
 
 

then what Is the matrix of T with 

respect to the ordered basis.          [20 Marks] 

107. Diagonalize the matrix

4 2 2

2 4 2

2 2 4

 
 

=
 
  

A        [20 Marks] 

108. Test for congruency of the matrices
1 0

0 1

 
=  

− 
A  and. 

0

0

 
=  

− 

i
B

i
Prove that 2 2=n mA B I  when and 

are positive integers.           [20 Marks] 

109. If A is askew symmetric matrix of order n Prove that ( )( )
1−

− +I A I A  is orthogonal.   

            [20 Marks] 

110. Test for the positive definiteness of the quadratic form 2 2 22 2 2+ + −x y z zx .  [20 Marks] 

 

      1998 
 

111. Given two linearly independent vectors ( )1,0,1,0 and ( )0, 1,1,− of 4R find a basis of which included 

these two vectors          [20 Marks] 
112. If is a finite dimensional vector space over R and if and are two linear transformations from V to R 

such that ( ) 0=Vf v in plies ( ) 0=g v  then prove that =g f  form some in R.    

            [20 Marks] 

113. Let 3 3: →T R R be defined by ( )1 2 3 2 3 1 2 3, , ( , )= − −T x x x x x cx bx ax  where , ,a b c are fixed real 

numbers. Show that T is a linear transformation of 3R and that 3 2 0+ + + = =A aA ba cI where A is the 

matrix of T with respect to standard basis of 3R         [20 Marks]  
114. If A and B are two matrices of order 2 2  such that A is skew Hermitian and =AB B  then show that

0=B              [20 Marks] 

115. If T is a complex matrix of order 2 2  such that 2 0= =trT trT  then show that 2 0=T    
            [20 Marks] 

116. Prove that a necessary and sufficient condition for a n n real matrix to be similar to a diagonal 
matrix A is that the set of characteristic vectors A of includes a set of linearly independent vectors. 
            [20 Marks] 

117. Let be a matrix. Then show that the sum of the rank and nullity of A is n.    [20 Marks] 
118. Find all real 2 2  matrices A whose characteristic roots are real and which satisfy  ' 1=A A (20Marks) 



 

Reputed Institute for Maths Optional of UPSC, IAS, IFoS (IFS), Civil Services and State PCS Exams  Page 14 

119. Reduce to diagonal matrix by rational congruent transformation the symmetric matrix

1 2 1

2 0 3

1 3 1

− 
 

=  
 − 

A .           [20 Marks] 

     1997 

 
120. Let V  be the vector space of polynomials overR . Find a basis and dimension of the subspace W of 

V  spanned by the polynomials       

  3 2 3 2 3 3 2

1 2 3 42 4 1, 2 3 9 1, 6 5, 2 5 7 5v t t t v t t t v t t v t t t= − + + = − + − = + − = − + +   [20 Marks] 

121. Verify that the transformation defined by 
1 2 1 2 1 2 2( , ) ( , , )T x x x x x x x= + −  is a linear transformation 

from 2R into 3R . Find its range, null space and nullity.      [20 Marks]  

122. Let V be the vector space of 2 2 matrices overR . Determine whether the matrices , ,A B C V

are dependent where 
1 2 3 1 1 5

, ,
3 1 2 2 4 0

A B C
− −     

= = =     
−     

    [20 Marks] 

123. Let a square matrix Aof ordern be such that each of its diagonal elements is  and each of its off-

diagonal elements is 1. If B A= is orthogonal, determined the values of  and   [20 Marks]  

124. Show that 

2 1 0

1 2 0

2 2 3

A

− 
 

= −
 
  

is diagonalizable overR and find a matrix P such that 1P AP−  is 

diagonal. Hence determine 25A         [20 Marks]  

125. Let [ ]ijA a= be a square matrix of order n such that [ ]  , 1,2,...ija M i j n  =  . Let  be an Eigen-

value ofA . Show that nM          [20 Marks] 

126. Define a positive definite matrix. Show that a positive definite matrix is always non-singular. Prove 
that its converse does not hold.           [20 Marks] 

127. Find the characteristics roots and their corresponding vectors for the matrix 

        

6 2 2

2 3 1

2 1 3

− 
 
− −
 
 − 

           [20 Marks] 

128. Find an invertible matrix P which reduces ( , , ) 2 2 2Q x y z xy yz zx= + +  to its canonical form. 

            [20 Marks] 

      1996 
 

129. 4 ,R let 
1W be the space generated by −(1,1,0, 1),(2,6,0) and − − −( 2, 3, 3,1) and let

2W  be the space 

generate by − − − −( 1, 2, 2,2),(4,6,4, 6) and −(1,3,4, 3) . Find a basis for the space +1 2W W  [20 Marks] 

130. Let V be a finite dimensional vector space and  , 0v V v . Show that there exist a linear 

functional f on V such that V         [20 Marks] 
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131. Let 3V R= and 
1 2 3, ,v v v  be a basis of 3R . Let :T V V→ be a linear transformation such that. By 

writing the matrix of T with respect to another basis, show that the matrix

1 1 1

1 1 1

1 1 1

 
 
 
  

 is similar to

3 0 0

0 0 0

0 0 0

 
 
 
  

           [20 Marks] 

132. Let 3V R= and :T V V→  be linear map defined by ( , , ) ( , 2 , 2 )T x y z x z x y x y z= + − + − + + . 

What is the matrix of T with respect to the basis (1,0,1),( 1,1,1)− and (0,1,1)? Using this matrix, 

write down the matrix of T with respect to the basis (0,1,2),( 1,1,1)− and(0,1,1)   [20 Marks] 

133. Let V and W be finite dimensional vector spaces such thatdim dimV W . Show that there is always a 

linear map from  V onto W          [20 Marks] 
134. Solve  

 

2 1

2 7 3

5

x y z

x z

x y z

+ − =

− =

+ − =

      by using Cramer’s rule      [20 Marks] 

135. Find the inverse of the matrix 

  

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 
 
 
 
 
 

   by computing its characteristic polynomial.    [20 Marks] 

136. Let A  and B  be n n matrices such thatAB BA= . Show that Aand B have a common 
characteristic vector.           [20 Marks] 

137. Reduce to canonical form the orthogonal matrix 

2 3 2 3 1 3

2 3 1 3 2 3

1 3 2 3 2 3

− 
 

−
 
  

    [20 Marks] 

      1995 
 

138. Let T be the linear operator in 3R defined by 
1 2 3 1 3 1 2 1 2 3( , , ) (3 , 2 , 2 4 )T x x x x x x x x x x= + − + − + + . 

What is the matrix of T in the standard ordered basis of 
3 ?R  What is a basis of range space of T and a 

basis  of null space of ?T           [20 Marks] 

139. Let A  be a square matrix of ordern . Prove that  AX b=  has solution if and only if 
nb R is orthogonal 

to all  solutions Y of the system 0TA Y =          [20 Marks] 
140. Define a similar matrix. Prove that the characteristic equation of two similar matrices is the same. 

Let 1, 2, and 3 be the Eigen-values of a matrix. Write down such a matrix. Is such a matrix unique?    
            [20 Marks] 

141. Show that 

5 6 6

1 4 2

3 6 4

A

− − 
 

= −
 
 − − 

is diagonalizable and hence determine 5A .      [20 Marks] 

142. Let Aand B  be matrices of ordern . Prove that if ( )I AB− is invertible, then ( )I BA− is also invertible 

and 1 1( ) ( )I BA I B I AB A− −− = + − . Show that AB andBA have precisely the same characteristic 

values.               [20 Marks] 
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143. If a and b complex numbers such that and H is a Hermitian matrix, show that the Eigen values of lie 
on a straight line in the complex plane.           [20 Marks] 

144.  Let A be a symmetric matrix. Show that A is positive definite if and only if its Eigen values are all 
positive.             [20 Marks] 

145. Let A and B be square matrices of order n. Show that AB-BA can never be equal to unit matrix.  
            [20 Marks] 

146. Let A and for every. Show that A is a non-singular matrix. Hence or otherwise prove that the Eigen-
values of A lie in the discs in the complex plane.         [20 Marks] 

      1994 
 

147. Show that 2

1 2 3( ) 1, ( ) 2, ( ) ( 2)f t f t t f t t= = − = −  form a basis of 
3,P the space of polynomials with 

degree 2 . Express 23 5 4t t− +  as a linear combination of
1 2 3, ,f f f .    [20 Marks] 

148. If 
4 3: ( ) ( )T V R V R→ is a linear transformation defined by

( , , , ) ( , 2 , 3 3 )T a b c d a b c d a c d a b c d= − + + + − + + − . For , , , ,a b c d R then verify that

4Rank Nullity dim ( )T T V R+ =         [20 Marks] 

149. If T is an operator on 
3R whose basis is  (1,0,0),(0,1,0),( 1,1,0)B = − such that

0 1 1

[ : ] 1 0 1

1 1 0

T B

 
 

= −
 
 − − 

 find the matrixT  with respect to a basis 

 1 (0,1, 1),(1, 1,1),( 1,1,0)B = − − −         [20 Marks] 

150. If [ ]ijA a= is an n n matrix such that ,ii ija n a r= = if ,i j  show that

[ ( ) ][ ( ) ] 0A n r I A n r nr I− − − − + = . Hence find the inverse of then n  matrix [ ]ijB b= . where

1,ii ijb b = =  when i j  and
1

1,
1 n

  
−

       [20 Marks] 

151. Prove that the Eigen vectors corresponding to distinct Eigen values of a square matrix are linearly 
independent.           [20 Marks] 

152. Determine the Eigen values and Eigen vectors of the matrix 

3 1 4

0 2 6

0 0 5

A

 
 

=
 
  

  [20 Marks] 

153. Show that a matrix congruent to a skew-symmetric matrix is skew-symmetric. Use the result to 
prove that the determinant of skew-symmetric matrix of even order is the square of a rational 
function of its elements.          [20 Marks] 

154. Find the rank of the matrix

− 
 
−

 
 −
 
− − − 

0 '

0 '

0 '

' ' ' 0

c b a

c a b

b a c

a b c

 where ' ' ' 0aa bb cc+ + = , ,a b c are all positive 

integers            [20 Marks] 
155. Reduce the following symmetric matrix to a diagonal form and interpret the result in terms of 

quadratic forms: 

3 2 1

2 2 3

1 3 1

A

− 
 

=
 
 − 

        [20 Marks] 

      1993 
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156. Show that the set  (1,0,0),(1,1,0),(1,1,1),(0,1,0)S = spans the vector space 3( )R R but it is not a 

basis set.           [20 Marks] 

157. Define rank and nullity of a linear transformationT . If V  be a finite dimensional vector space and 

T  a linear operator on V  such that rank 2T = rank ,T then prove that the null space ofT =  the 

null space of 2T and the intersection of the range space and null space toT is the zero subspace of 
V .            [20 Marks] 

158. If the matrix of a linear operator T on 2R  relative to the standard basis  (1,0),(0,1) is 
1 1

,
1 1

 
 
 

what is the matrix of T  relative to the basis  (1,1),(1, 1) ?B = −     [20 Marks] 

159. If Abe an orthogonal matrix with the property that -1 is not an Eigen value, then show that a is 

expressible as 1( )( ) SI S S S −− + for some suitable skew-symmetric matrixS .  [20 Marks] 

160. Determine the following form as definite, semi-definite or indefinite: 
2 2 2

1 2 3 2 3 3 1 1 22 2 3 4 4 2x x x x x x x x x+ + − − +        [20 Marks] 

161. Prove that the inverse of 
A O

B C

 
 
 

is 
1

1 1 1

A O

C BA C

−

− − −

 
 
 

where ,A C  are non-singular matrices and 

hence find the inverse of  

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

 
 
 
 
 
 

       [20 Marks] 

162. Show that any two Eigen vectors corresponding to two distinct Eigen values of Hermitian matrix 
and Unitary matrix are orthogonal         [20 Marks] 

163. A matrix B of order n n  is of the form A  where  is a scalar and Ahas unit elements 
everywhere except in the diagonal which has elements . Find  and   so thatB  may be 

orthogonal.            [20 Marks] 

164. Find the rank of the matrix 

1 1 3 6

1 3 3 4

5 3 3 11

− 
 

− − 
 
 

 by reducing it to canonical form. [20 Marks] 

      1992 
 
165. Let V and U  be vector spaces over the field K and let V be of finite dimension. Let :T V U→ be 

a linear Map. dim dim ( ) dim ( )V R T N T= +       [20 Marks] 

166. Let  ( , , ) / 0S x y z x y z= + + = , , ,x y z  being real. Prove that S  is a subspace of 3R .  Find a basis 

ofS              [20 Marks] 
167. Verify which of the following are linear transformations?  

(i) 2:T R R→ defined by ( ) (2 , )T x x x= −  

(ii) 2 3:T R R→ defined by ( , ) ( , , )T x y xy y x=  

(iii) 2 3:T R R→ defined by ( , ) ( , , )T x y x y y x= +  

(iv) 2:T R R→ defined by ( ) (1, 1)T x = −       [20 Marks] 

168. Let 2,1 2,3:T M M→ be a linear transformation defined by (with usual notations) 

3 6 01 2 1 1 1
, 

0 5 0 04 1 1 2
T T
       

= =       
       

 Find 
x

T
y

 
 
 

       [20 Marks] 

169. For what values of   do the following equations 
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2

1

2 4

4 10

x y z

x y z

x y z





+ + =

+ + =

+ + =

 Have solutions? Solve them completely in each case.     [20 Marks] 

170. Prove that a necessary and sufficient condition of a real quadratic form 'X AX  to be positive 
definite is that the leading principal minors of A  are all positive.    [20 Marks]  

171. State Cayley-Hamilton theorem and use it to calculate the inverse of the matrix 
2 1

4 3

 
→  

 
 

            [20 Marks] 
172. Transform the following to the diagonal forms and give the transformation employed: 

2 2 22 , 8 4 5x y x xy y+ − +          [20 Marks] 

173. Prove that the characteristic roots of a Hermitian matrix are all real and a characteristic root of a 
skew-Hermitian is either zero or a pure imaginary number.     [20 Marks] 


