

Modern Algebra Previous year Questions from 2020 to 1992

PSC MATHS

- Let S_3 and Z_3 be permutation group on 3 symbols and group of residue classes module 3 respectively. Show 1. that there is no homomorphism of S_3 in Z_3 except the trivial homomorphism. [10 Marks]
- 2. Let R be a principal ideal domain. Show that every ideal of a quotient ring of is R principal ideal and R / Pis a principal ideal domain for a prime ideal P of R[10 Marks]
- Let G be a finite cyclic group of order n then prove that G has $\phi(n)$ generators where ϕ is Euler's ϕ 3. function. [15 Marks]
- Let R be a finite field of characteristic $p(\geq 0)$.Show that the mapping $f: R \to R$ defined by 4. [15 Marks]

 $f(a) = a^p, \forall a \in R$ is an isomorphism.

2019

- 5. Let G be a finite group H and K subgroups of G such that $K \subset H$ Show that (G:K) = (G:K)(H:K)
 - [10 Marks]

[15 Marks]

- If G and H are finite groups whose orders are relatively prime then prove that there is only one 6. homomorphism from G to H the trivial one. [10 Marks] [10 Marks]
- 7. Write down all quotient groups of the group $Z_{12,...}$
- 8. Let a be an irreducible element of the Euclidean Ring R then prove that R/(a) is a field [10 Marks]

2018

- Let R be an integral domain with unit element. Show that any unit in R[x] is a unit in R 9. [10 Marks]
- Show that the quotient group of $(\mathbb{R},+)$ modulo \mathbb{Z} is isomorphic to the multiplicative group of complex 10. numbers on the unit circle in the complex plane. Here ${\mathbb R}$ is the set of real number and ${\mathbb Z}$ is the set of integers. [15 Marks]
- 11. Find all the proper subgroups of the multiplicative group of the field $(\mathbb{Z}_{13}, +_{13}, \times_{13})$, where $+_{13}$ and \times_{13} represent addition modulo 13 and multiplication modulo 13 respectively. [20 Marks]

- Let G be a group of order n. Show that G is isomorphic to a subgroup of the permutation group S_n . 12. [10 Marks]
- 13. Let F be a field and F[x] denote the ring of polynomial over F in a single variable X. For $f(X), g(X) \in F[X]$ with $g(X) \neq 0$, show that there exist $q(X), r(X) \in F[X]$ such that degree r(X) <degree g(X) and f(X) = q(X).g(X) + r(X). [20 Marks]
- 14. Show that the groups $Z_5 \times Z_7$ and Z_{35} are isomorphic.

- 15. Let K be a field and K[X] be the ring of polynomials over K in a single variable X for a polynomial $f \in K[X]$ Let (f) denote the ideal in K[X] generated by f. show that (f) is a maximal ideal in K[X] if and only iff is an irreducible polynomial over K. [10 Marks]
- 16. Let p be prime number and Z_p denote the additive group of integers modulo p. show that that every nonzero element Z_p of generates Z_p
- 17. Let K be an extension of a field F prove that the element of K which are algebraic over F form a subfield of K Further if $F \subset K \subset L$ Fare fields L is algebraic over K and K is algebraic over F then prove that L is algebraic over F. [20 Marks]
- 18. Show that every algebraically closed field is infinite.

2015

- How many generators are there of the cyclic group G of order 8? Explain. 19. (i) [5 Marks]
 - Taking a group $\{e, a, b, c\}$ of order 4, where e is the identity, construct composition tables (ii) [5 Marks]

showing that one is cyclic while the other is not

- Give an example of a ring having identity but a subring of this having a different identity [10 Marks] 20.
- 21. If R is a ring with unit element 1 and ϕ is a homomorphism of R onto R', prove that $\phi(1)$ is the unit element of R'[15 Marks]
- Do the following sets form integral domains with respect to ordinary addition and multiplication? Is 22. so, state if they are fields: [5+6+4=15 Marks]
 - (i) The set of numbers of the form $b\sqrt{2}$ with b rational.
 - (ii) The set of even integers.
 - (iii) The set of positive integers.

2014

Let *G* be the set of all real 2×2 matrices $\begin{pmatrix} x & y \\ 0 & z \end{pmatrix}$, where $xz \neq 0$. Show that *G* is group under matrix 23.

multiplication. Let N denote the subset $\left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} : a \in R \right\}$. Is N a normal subgroup of G? Justify your answer.

Show that Z_7 is a field. Then find $([5] + [6])^{-1}$ and $(-[4])^{-1}$ in Z_7 24. [15 Marks]

- Show that the set $\{a + b\omega : \omega^3 = 1\}$, where *a* and *b* are real numbers, is a field with respect to usual 25. addition and multiplication. [15 Marks]
- Prove that the set $Q(\sqrt{5}) = \{a + b\sqrt{5} : a, b \in Q\}$ is commutative ring with identity. 26. [15 Marks]

[15 Marks]

[15 Marks]

Show that the set of matrices $S = \begin{cases} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} a, b \in R \end{cases}$ is a field under the usual binary operations of 27. matrix addition and matrix multiplication. What are the additive and multiplicative identities and what is the inverse of $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$? Consider the map $f: C \to S$ defined by $f(a+ib) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Show that f is an isomorphism. (Here R is the set of real numbers and C is the set of complex numbers)

[10 Marks]

[10 Marks]

[10 Marks]

[15 Marks]

[6 Marks]

- Give an example of an infinite group in which every element has finite order 28.
- What are the orders of the following permutation in S_{10} ? $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 8 & 7 & 3 & 10 & 5 & 4 & 2 & 6 & 9 \end{pmatrix}$ and 29. $(1 \ 2 \ 3 \ 4 \ 5)(6 \ 7)$
- What is the maximal possible order of an element in $S_{\scriptscriptstyle 10}$? Why? Give an example of such an 30. element. How many elements will there be in S_{10} of that order? [13 Marks]
- Let $J = \{a + ib / a, b \in Z\}$ be the ring of Gaussian integers (subring of C). Which of the following is J: 31. Euclidean domain, principal ideal domain, and unique factorization domain? Justify your answer [15 Marks]
- Let R^{C} = ring of all real value continuous functions on [0, 1], under the operations 32.

$$(f+g)x = f(x) + g(x), (fg)x = f(x)g(x)$$
. Let $M = \left\{ f \in \mathbb{R}^C / f\left(\frac{1}{2}\right) = 0 \right\}$. Is M a maximal ideal of R ?

Justify your answer.

- How many elements of order 2 are there in the group of order 16 generated by a and b such that 33. the order of a is 8, the order of b is 2 and $bab^{-1} = a^{-1}$. [12 Marks]
- How many conjugacy classes does the permutation group S_5 of permutation 5 numbers have? Write 34. down one element in each class (preferably in terms of cycles). [15 Marks]
- 35. Is the ideal generated by 2 and X in the polynomial ring Z[X] of polynomials in a single variable X with coefficients in the ring of integers Z, a principal ideal? Justify your answer [15 Marks]
- Describe the maximal ideals in the ring of Gaussian integers $Z[i] = \{a + ib / a, b \in Z\}$. 36. [20 Marks]

Show that the set $G = \{f_1, f_2, f_3, f_4, f_5, f_6\}$ of six transformations on the set of Complex numbers 37. defined by $f_1(z) = z$, $f_2(z) = 1 - z$, $f_3(z) = \frac{z}{(1-z)}$, $f_4(z) = \frac{1}{z}$, $f_5(z) = \frac{1}{(1-z)}$, $f_6(z) = \frac{(z-1)}{z}$ is a nonabelian group of order 6 w.r.t. composition of mappings [12 Marks] [6 Marks]

- Prove that a group of Prime order is abelian. 38.
- How many generators are there of the cyclic group (G, .) of order 8? 39.
- Give an example of a group G in which every proper subgroup is cyclic but the group itself is not 40. cyclic [15 Marks]

41. Let F be the set of all real valued continuous functions defined on the closed interval [0, 1]. Prove that (F, +, .) is a Commutative Ring with unity with respect to addition and multiplication of functions defined point wise as below:

$$\begin{array}{c} (f+g)x = f(x) + g(x) \\ \text{and } (fg)x = f(x)g(x) \end{array} \right\} x \in [0, 1] \text{ where } f, g \in F$$
 [15 Marks]

42. Let *a* and *b* be elements of a group, with $a^2 = e, b^6 = e$ and $ab = b^4a$. Find the order of *ab*, and express its inverse in each of the forms $a^m b^n$ and $b^m a^n$ [20 Marks]

2010

- 43. Let $G = R \{-1\}$ be the set of all real numbers omitting -1. Define the binary relation * on G by a * b = a + b + ab. Show (G, *) is a group and it is abelian [12 Marks]
- 44. Show that a cyclic group of order 6 is isomorphic to the product of a cyclic group of order 2 and a cyclic group of order 3. Can you generalize this? Justify. [12 Marks]
- 45. Let $(R^*, .)$ be the multiplicative group of non-zero reals and (GL(n, R), X) be the multiplicative group of $n \times n$ non-singular real matrices. Show that the quotient group $\frac{GL(n, R)}{SL(n, R)}$ and $(R^*, .)$ are

isomorphic where $SL(n, R) = \{A \in GL(n, R) / \det A = 1\}$ what is the center of GL(n, R) [15 Marks]

- 46. Let $C = \{f : I = [0, 1] \rightarrow R/f \text{ is continuous }\}$. Show C is a commutative ring with 1 under point wise addition and multiplication. Determine whether C is an integral domain. Explain. [15 Marks]
- 47. Consider the polynomial ring Q[x]. Show $p(x) = x^3 2$ is irreducible over Q. Let I be the ideal Q[x]in generated by p(x). Then show that $\frac{Q[x]}{I}$ is a field and that each element of it is of the form $a_0 + a_1 t + a_2 t^2$ with a_0, a_1, a_2 in Q and t = x + I [15 Marks]
- 48. Show that the quotient ring $\frac{Z[i]}{1+3i}$ is isomorphic to the ring $\frac{Z}{10Z}$ where Z[i] denotes the ring of Gaussian integers [15 Marks]

- 49. If R is the set of real numbers and R_{+} is the set of positive real numbers, show that R under addition (R, +) and R_{+} under multiplication $(R_{+}, .)$ are isomorphic. Similarly, if Q is set of rational numbers and Q_{+} is the set of positive rational numbers, are (Q, +) and $(Q_{+}, .)$ isomorphic? Justify your answer. [4+8=12 Marks]
- 50. Determine the number of homomorphisms from the additive group Z_{15} to the additive group Z_{10} (Z_n is the cyclic group of order n) [12 Marks]
- 51. How many proper, non-zero ideals, does the ring Z_{12} have? Justify your answer. How many ideals does the ring $Z_{12} \oplus Z_{12}$ have? Why? [2+3+4+6=15Marks]
- 52. Show that the alternating group of four letters A_4 has no subgroup of order 6. [15 Marks]
- 53. Show that Z[X] is a unique factorization domain that is not a principal ideal domain (Z is the ring of integers). Is it possible to give an example of principal ideal domain that is not a unique factorization domain? (Z[X] is the ring of polynomials in the variable X with integer.) [15 Marks]
- 54. How many elements does the quotient ring $\frac{Z_5[X]}{X^2+1}$ have? Is it an integral domain? Justify yours answers. [15 Marks]

- 55. Let R_0 be the set of all real numbers except zero. Define a binary operation * on R_0 as a * b = |a|bwhere |a| denotes absolute value of a. Does $(R_0, *)$ form a group? Examine. [12 Marks]
- 56. Suppose that there is a positive even integer n such that $a^n = a$ for all the elements a of some ring R. Show that a + a = 0 for all $a \in R$ and $a + b = 0 \Rightarrow a = b$ for all $a, b \in R$ [12 Marks]
- 57. Let G and \overline{G} be two groups and let $\phi: G \to \overline{G}$ be a homomorphism. For any element $a \in G$
 - (i) Prove that $O(\phi(a))/O(a)$
 - (ii) Ker ϕ is normal subgroup of G.
- 58. Let *R* be a ring with unity. If the product of any two non-zero elements is non-zero. Then prove that $ab = 1 \Rightarrow ba = 1$. Whether Z_6 has the above property or not explain. Is Z_6 an integral domain?

[15 Marks]

[15 Marks] [15 Marks]

- 59. Prove that every Integral Domain can be embedded in a field.
- 60. Show that any maximal ideal in the commutative ring F[x] of polynomial over a field F is the principal ideal generated by an irreducible polynomial. [15 Marks]

2007

- 61. If in a group G, $a^5 = e$, e is the identity element of G $aba^{-1} = b^2$ for a, $b \in G$, then find the order of b [12 Marks]
- 62. Let $R = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where $a, b, c, d \in Z$. Show that R is a ring under matrix addition and multiplication $\left\{A = \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix}, a, b \in Z\right\}$. Then show that A is a left ideal of R but not a right ideal of R. **[12 Marks]**
- 63. (i) Prove that there exists no simple group of order 48.[15 Marks](ii) $1 + \sqrt{-3}$ and $Z\left[\sqrt{-3}\right]$ is an irreducible element, but not prime. Justify your answer.[15 Marks]
- 64. Show that in the ring $R = \{a + b\sqrt{-5}/a, b \in Z\}$. The element $\alpha = 3$ and $\beta = 1 + 2\sqrt{-5}$ are relatively prime, but αy and βy have no g.c.d in R, where $\gamma = 7(1 + 2\sqrt{-5})$ [30 Marks]

- 65. Let S be the set of all real numbers except -1. Define on S by a * b = a + b + ab. Is (S, *) a group? Find the solution of the equation 2 * x * 3 = 7 in S. [12 Marks]
- 66. If G is a group of real numbers under addition and N is the subgroup of G consisting of integers, prove that $\frac{G}{N}$ is isomorphic to the group H of all complex numbers of absolute value 1 under multiplication [12 Marks]
- 67. (i) Let O(G) = 108. Show that there exists a normal subgroup or order 27 or 9. [10 Marks] (ii) Let G be the set of all those ordered pairs (a, b) of real numbers for which $a \neq 0$ and define in G, an operation as follows: $(a, b) \otimes (c, d) = (ac, bc + d)$ Examine whether G is a group w.r.t the operation \otimes . If it is a group, is G abelian? [10 Marks]

Show that $Z\left\lceil \sqrt{2} \right\rceil = \left\{ a + b\sqrt{2} : a, b \in Z \right\}$ is a Euclidean domain. 68.

[30 Marks]

[12 Marks]

[15 Marks]

[30 Marks]

2005

- 69. If M and N are normal subgroups of a group G such that $M \cap N = \{e\}$, show that every element of M commutes with every element of N. [12 Marks]
- Show that (1 + i) is a prime element in the ring R of Gaussian integers. 70.
- Let H and K be two subgroups of a finite group G such that $|H| > \sqrt{|G|}$ and $|K| > \sqrt{|G|}$. Prove that 71. $H \cap K \neq \{e\}$. [15 Marks]
- If $f: G \to G'$ is an isomorphism, prove that the order $a \in G$ of is equal to the order of f(a)72.
- 73. Prove that any polynomial ring F[x] over a field F is U.F.D

2004

- If p is prime number of the form 4n+1, n being a natural number, then show that congruence 74. $x^2 \equiv -1 \pmod{p}$ is solvable.
- Let G be a group such that of all $a, b \in G$ (i) ab = ba (ii) (O(a), O(b)) = 1 then show that 75. O(ab) = O(a) O(b)
- Verify that the set E of the four roots of $x^4 1 = 0$ forms a multiplicative group. Also prove that a 76. transformation $T, T(n) = i^n$ is a homomorphism from I_+ (Group of all integers with addition) onto *E* under multiplication. [10 Marks]
- Prove that if cancellation law holds for a ring R then $a(\neq 0) \in R$ is not a zero divisor and conversely 77. [10 Marks]
- The residue class ring $\frac{Z}{(m)}$ is a field iff *m* is a prime integer. 78.
- Define irreducible element and prime element in an integral domain D with units. Prove that every 79. prime element in D is irreducible and converse of this is not (in general) true. [25 Marks]

2003

- If H is a subgroup of a group G such that $x^2 \in H$ for every $x \in G$, then prove that H is a normal 80. subgroup of G[12 Marks]
- Show that the ring $Zig[iig] = ig\{a+ibig|a, \ b\in Z, i=\sqrt{-1}ig\}$ of Gaussian integers is a Euclidean domain 81.
- 82. Let R be the ring of all real-valued continuous functions on the closed interval [0, 1]. Let $M = \left\{ f(x) \in R \middle/ f\left(\frac{1}{3}\right) = 0 \right\}$. Show that M is a maximal ideal of R[10 Marks]
- Let M and N be two ideals of a ring R. Show that $M \cup N$ is an ideal of R if and only if either 83. $M \subset N \text{ or } N \subset M$ [10 Marks]
- Show that $Q(\sqrt{3}, i)$ is a splitting field for $x^5 3x^3 + x^2 3$ where Q is the field of rational numbers 84. [15 Marks]

[12 Marks]

[12 Marks]

[15 Marks]

[12 Marks]

- 85. Prove that $x^2 + x + 4$ is irreducible over F the field of integers modulo 11 and prove further that $\frac{F[x]}{(x^2 + x + 4)}$ is a field having 121 elements. [15 Marks]
- 86. Let R be a unique factorization domain (U.F.D), then prove that R[x] is also U.F.D [10 Marks]

[12 Marks]

[12 Marks]

[10 Marks]

[10 Marks]

[10 Marks]

[20 Marks]

2002

- 87. Show that a group of order 35 is cyclic.
- 88. Show that polynomial $25x^4 + 9x^3 + 3x + 3$ is irreducible over the field of rational numbers
- 89. Show that a group of p^2 is abelian, where p is a prime number.
- 90. Prove that a group of order 42 has a normal subgroup of order 7.
- 91. Prove that in the ring F[x] of polynomial over a field F, the ideal 1 = |p(x)| is maximal if and only if the polynomial p(x) is irreducible over F. [20 Marks]
- 92. Show that every finite integral domain is a field
- 93. Let F be a field with q elements. Let E be a finite extension of degree n over F. Show that E has q^n elements [10 Marks]

2001

- 94. Let *K* be a field and *G* be a finite subgroup of the multiplicative group of non-zero elements of *K*. Show that *G* is a cyclic group. [12 Marks]
- 95. Prove that the polynomial $1 + x + x^2 + x^3 + ... + x^{p-1}$ where p is prime number is irreducible over the field of rational numbers. [12 Marks]
- 96. Let N be a normal subgroup of a group G. Show that $\frac{G}{N}$ is abelian if and only if for all

 $x, y \in G, xyz^{-1} \in N$

- 97. If *R* is a commutative ring with unit element and *M* is an ideal of *R*, then show that maximal ideal of *R* if and only if $\frac{R}{M}$ is a field [20 Marks]
- 98. Prove that every finite extension of a field is an algebraic extension. Give an example to show that the converse is not true. [20 Marks]

2000

- 99. Let *n* be a fixed positive integer and let Z_n be the ring of integers modulo *n*. Let $G = \{\overline{a} \in Z_n a \mid a \neq 0\}$ and *a* is relatively prime to *n*. Show that *G* is a group under multiplication defined in Z_n . Hence, or otherwise, show that $a^{\phi(n)} \equiv a \pmod{n}$ for all integers a relatively prime to *n* where $\phi(n)$ denotes the number of positive integers that are less than *n* and are relatively prime to *n* [20 Marks]
- 100. Let M be a subgroup and N a normal subgroup of group G. Show that MN is a subgroup of G and $\frac{MN}{N}$ is

isomorphic to
$$rac{M}{M \cap N}$$
. [20 Marks]

101. Let F be a finite field. Show that the characteristic of F must be a prime integer p and the number of elements in F must be p^m for some positive integer m. [20 Marks]

102. Let F be a field and F[x] denote the set of all polynomials defined over F. If f(x) is an irreducible polynomial in F[x], show that the ideal generated by f(x) in F[x] is maximal and $\frac{F[x]}{f(x)}$ is a field.

[20 Marks] [20 Marks]

[20 Marks]

103. Show that any finite commutative ring with no zero divisors must be a field.

1999

- 104. If ϕ is a homomorphism of G into \overline{G} with kernel K, then show that K is a normal subgroup of G.
- 105. If p is prime number and $p^{\alpha} / O(G)$, then prove that G has a subgroup of order p^{α} . [20 Marks]
- 106. Let *R* be a commutative ring with unit element whose only ideals are (0) and *R* itself. Show that *R* is a field. [20 Marks]

1998

- 107. Prove that if a group has only four elements then it must be abelian. [20 Marks]
- 108. If H and K are subgroups of a group G then show that HK is a subgroup of G if and if only HK = KH.

[20 Marks]

- 109. Let (R, +, .) be a system satisfying all the axioms for a ring with unity with the possible exception of a + b = b + a. Prove that (R, +, .) is a ring. [20 Marks]
- 110. If p is prime then prove that Z_p is a field. Discuss the case when p is not a prime number. [20 Marks]
- 111. Let *D* be a principal domain. Show that every element that its neither zero nor a unit in *D* is a product of irreducible. [20 Marks]

- 112. Show that a necessary and sufficient condition for a subset H of a group G to be a subgroup is $HH^{-1} = H$. [20 Marks]
- 113. Show that the order of each subgroup of a finite group is a divisor of the order of the group. [20 Marks]
- 114. In a group G, the commutator $(a,b) \ a,b \in G$ is the element $aba^{-1}b^{-1}$ and the smallest subgroup containing all commutators is called the commutator subgroup of G. Show that a quotient group $\frac{G}{H}$ is abelian if and only if H contains the commutator subgroup of G. [20 Marks]
- 115. If $x^2 = x$ for all x in a ring R, show that R is commutative. Give an example to show that the converse is not true. [20 Marks]
- 116. Show that an ideal S of the ring of integers Z is maximal ideal if and only if S is generated by a prime integer. [20 Marks]
- 117. Show that in an integral domain every prime element is irreducible. Give an example to show that the converse is not true. [20 Marks]

- Let R be the set of real numbers and $G = \{(a,b) \mid a, b \in R, a \neq 0\}$. $G \times G \rightarrow G$ is defined by 118. (a,b)*(c,d) = (ac,bc+d). Show that (G,*) is a group. Is it abelian? [20 Marks]
- Let f be a homomorphism of a group G onto a group G' with kernel H. For each subgroup K' of 119. G' define K by. Prove that

[20 Marks]

[20 Marks]

[20 Marks]

[20 Marks]

[20 Marks]

(i)
$$K'$$
 is isomorphic to $\frac{K}{H}$

(ii)
$$\frac{G}{K}$$
 is isomorphic to $\frac{G'}{K'}$

- 120. Prove that a normal subgroup H of a group G is maximal, if and only if the quotient group is [20 Marks] simple.
- In a ring R, prove that cancellation laws hold. If and only if R has no zero divisors. 121.
- If S is an ideal of ring R and T any subring of R, then prove that S is an ideal of 122. $S + T = \{s + t \mid s \in S, t \in T\}.$ [20 Marks]
- 123. Prove that the polynomial $x^2 + x + 4$ is irreducible over the field of integers modulo 11. [20 Marks]

1995

- Let G be a finite set closed under an associative binary operation such that $ab = ac \Rightarrow b = c$ and 124. $ba = ca \Rightarrow b = c$ for all $a, b, c \in G$. Prove that G is a group. [20 Marks]
- Let G be group of order p^n , where p is a prime number and n > 0. Let H be a proper subgroup of G 125. and $N(H) = \{x \in G : x^{-1}hx \in H \ \forall h \in H\}$. Prove that $N(H) \neq H$. [20 Marks]
- Show that a group of order 112 is not simple. 126.
- 127. Let R be a ring with identity. Suppose there is an element a of R which has more than one right inverse. Prove that a has infinitely many right inverses. [20 Marks]
- Let *F* be a field and let p(x) be an irreducible polynomial over *F*. Let $\langle p(x) \rangle$ be the ideal generated by p(x). 128. Prove that $\langle p(x) \rangle$ is a maximal ideal. [20 Marks]
- Let *F* be a field of characteristic $p \neq 0$. Let F(x) be the polynomial ring. Suppose 129.

 $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ is an element of F(x). Define $f(x) = a_1 + 2a_2x + 3a_3x^2 + ... + na_nx^{n-1}$. If [20 Marks]

f(x) = 0, prove that there exists $g(x) \in F(x)$ such that $f(x) = g(x^p)$.

- 130. If G is a group such that $(ab)^n = a^n b^n$ for three consecutive integers n for all $a, b \in G$, then prove that G is abelian. [20 Marks]
- 131. Can a group of order 42 be simple? Justify your claim
- 132. Show that the additive group of integers modulo 4. Is isomorphic to the multiplicative group of the non-zero elements of integers modulo 5. State the two isomorphisms [20 Marks]
- 133. Find all the units of the integral domain of Gaussian integers.
- Prove or disprove the statement: The polynomial ring I[x] over the ring of integers is a principal 134. ideal ring. [20 Marks]

135. If *R* is an integral domain (not necessarily a unique factorization domain) and *F* is its field of quotients, then show that any element f(x) in F(x) is of the form $f(x) = \frac{f_0(x)}{a}$ where $f_0(x) \in R[x], a \in R$. [20 Marks]

1993

- 136. If G is a cyclic group of order n and p divides n, then prove that there is a homomorphism of G onto a cyclic group of order p. What is the Kernel of homomorphism? [20 Marks]
- 137. Show that a group of order 56 cannot be simple.
- 138. Suppose that H, K are normal subgroups of a finite group G with H a normal subgroup of K. If $P = \frac{K}{H}$, $S = \frac{G}{H}$, then prove that the quotient groups $\frac{S}{P}$ and $\frac{G}{K}$ are isomorphic. [20 Marks]
- 139. If Z is the set of integers then show that $Z[\sqrt{-3}] = \{a + \sqrt{-3} \ b : a, b \in Z\}$ is not a unique factorization domain [20 Marks]
- 140. Construct the addition and multiplication table for $\frac{Z_3[x]}{\langle x^2 + 1 \rangle}$ where Z_3 is the set of integers modulo 3
 - and $\langle x^2 + 1 \rangle$ is the ideal generated by $(x^2 + 1)$ in $Z_3[x]$. [20 Marks]
- 141. Let Q be the set of rational number and $Q(2^{1/2}, 2^{1/3})$ the smallest extension field of Q containing $2^{1/2}, 2^{1/3}$. Find the basis for $Q(2^{1/2}, 2^{1/3})$ over Q.[20 Marks]

1992

142. If H is a cyclic normal subgroup of a group G, then show that every subgroup of H is normal in G.

- 143. Show that no group of order 30 is simple.
- 144. If *p* is the smallest prime factor of the order of a finite group *G*, prove that any subgroup of index *p* is normal. [20 Marks]
- 145. If *R* is unique factorization domain, then prove that any $f \in R[x]$ is an irreducible element of R[x], if and only if either *f* is an irreducible element of *R* or *f* is an irreducible polynomial in R[x].

[20 Marks]

[20 Marks]

[20 Marks]

[20 Marks]

146. Prove that $x^2 + 1$ and $x^2 + x + 4$ are irreducible over F, the field of integers modulo 11. Prove also that $\frac{F[x]}{\langle x^2 + 1 \rangle}$ and $\frac{F[x]}{\langle x^2 + x + 4 \rangle}$ are isomorphic fields each having 121 elements. [20 Marks]

147. Find the degree of splitting field $x^5 - 3x^3 + x^2 - 3$ over Q, the field of rational numbers. [20 Marks]