

Real Analysis **Previous year Questions from 2020 to 1992**

с мат

1. Prove that the sequence (a_n) satisfying the condition $|a_{n+1}-a_n|\leq \alpha|a_n-a_{n-1}|$ $0\leq\alpha\leq 1$ for all-natural numbers $0 \leq \alpha \leq 1$ is a Cauchy sequence. **In the case of the c** 2. Prove that the function $f(x) = \sin x^2$ is not uniformly continuous on the interval $\left[0, \infty\right]$ **[15 Marks]** 3. If $\tan^{-1} \frac{x^3 + y^3}{3}$, $x^3 + y$ $u = \tan^{-1} \frac{x^3 + y^3}{3}$, $x \neq y$ $\frac{y}{x-y}$ $\hat{z} = \tan^{-1} \frac{x^3 + y^3}{x - y}, x \neq y$ then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial u} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 - 4 \sin^2 u)$ $\frac{\partial^2 u}{\partial^2 u} + 2x\sqrt{\frac{\partial^2 u}{\partial^2 u} + \frac{v^2}{\partial^2 u}} = (1 - 4\sin^2)$ uniformly continuous on the interval $\left[0,\infty\right[$ **[15 M**
 $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial u} + y^2 \frac{\partial^2 u}{\partial y^2} = \left(1 - 4 \sin^2 u\right) \sin 2u$ $\frac{\partial^2 u}{\partial x^2}$ + 2xy $\frac{\partial^2 u}{\partial x \partial u}$ + y² $\frac{\partial^2 u}{\partial y}$ ormly continuous on the interval $\left[\frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial y^2} + y^2 \frac{\partial^2 u}{\partial x^2} \right] = \left(1\right)$ v continuous on the interval $\left[0,\infty\right]$
+ $2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \left(1 - 4 \sin^2 u\right)$ $\frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial u} + y^2 \frac{\partial^2 u}{\partial y^2} = \left(1\right)$ **[20 Marks]** 4. Show that $\int \frac{\sin n \pi}{\sin n} dx = \frac{1}{\sqrt{n}} \log_e (1 + \sqrt{2})$ $\frac{1}{2}$ \sin^2 $\int_{0}^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx = \frac{1}{\sqrt{2}} \log_e (1 + \sqrt{2})$ $\frac{\sin^2 x}{\sin x + \cos x} dx = \frac{1}{\sqrt{2}}$ *e* $\int_{0}^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx$ $\int_{0}^{t/2} \frac{\sin^2 x}{\sin x + \cos x} dx = \frac{1}{\sqrt{2}} \log_e (1 + \sqrt{2})$ **[15 Marks] 2019** 5. Show that the function $(x, y) = \begin{cases} \frac{x^2 - y^2}{x - y} & (x, y) \neq (1, -1) & (1, 1) \end{cases}$ $\begin{aligned} -y \quad (x, y) = (1,1) \quad (1, -1) \end{aligned}$ $f(x, y) = \begin{cases} \frac{x^2 - y^2}{x - y} & (x, y) \end{cases}$ *x y* $=\begin{cases} \frac{x^2 - y^2}{x - y} & (x, y) \neq (1, -1) \end{cases}$ $\overline{ }$ $x-y$ (x, y) = (1,1) $(1,-1)$ is continuous and differentiable at $(1,-1)$
0 $(x, y) = (1,1)$ $(1,-1)$ **[10 Marks]** 6. Evaluate 1 $\int_{0}^{1} x(1+x^2)$ $\frac{\tan^{-1}(ax)}{a^{2}}dx, a \ge 0, a \ne 1$ $\frac{1}{(1 + x^2)}$ $\frac{ax}{2}dx, a \geq 0, a$ $\frac{x(1+x)}{x}$ $\int_{0}^{\infty} \frac{\tan^{-1}(ax)}{ax^2} dx, a \ge 0, a \ne 1$ $\int_0^1 \frac{\mathrm{d} u}{x(1+1)} dx$ **[10 Marks]** 7. Using differentials, find an approximate value of $f(4.1, 4.9)$ where $f(x, y) = (x^3 + x^2y)^{\frac{1}{2}}$ **[15 Marks]** 8. Discuss the uniform convergence of $f_n(x) = \frac{nx}{1 + n^2x^2}$, $\forall x \in \mathbb{R}(-\infty, \infty)$ $\frac{1}{n^2x}$ $=\frac{nx}{1+n^2x^2}$, $\forall x \in \mathbb{R}(-\infty,\infty)$ n $n = 1, 2, 3, \dots$ **[15 Marks]** 9. Find the maximum value of the $f(x, y, z) = x^2y^2z^2$ subject to the subsidiary condition. $x^{2} + y^{2} + z^{2} = c^{2}, (x, y, z \ge 0)$ **[15 Marks]** 10. Discuss the convergence of 2 $\frac{1}{1}$ ln *x dx* \int_{1}^{∞} **[15 Marks] 2018** 11. Prove the inequality: 2 $\pi/2$ π $2\pi^2$ /6 2 $\frac{1}{9} < \int_{\pi/6} \frac{1}{\sin x} dx < -\frac{1}{9}$ *x dx x* $rac{\pi^2}{9} < \int \frac{\pi}{2} \frac{x}{\sin x} dx < \frac{2\pi^2}{9}$ π **[10 Marks]** 12. Find the range of $p(>0)$ for which the series: $\frac{1}{(1+a)^p} - \frac{1}{(2+a)^p} + \frac{1}{(3+a)^p} - \dots, a > 0$ $\frac{1}{(1+a)^p} - \frac{1}{(2+a)^p} + \frac{1}{(3+a)^p} - \dots, a$ $-\frac{1}{(2+a)^p}+\frac{1}{(2+a)^p}-...,a>0$ $\frac{1}{(a+a)^p} - \frac{1}{(2+a)^p} + \frac{1}{(3+a)^p}$ (i) absolutely convergent and (ii) conditionally convergent. **[10 Marks]** 13. Show that if a function f defined on an open interval (a,b) of \R is convex then f is continuous. Show, by example, if the condition of open interval is dropped, then the convex function need not be continuous.

[15 Marks]

14. Suppose \R be the set of all real numbers and $f:\R\to\R$ is a function such that the following equations hold for all $x, y \in \mathbb{R}$:

 $(i) f (x + y) = f (x) + f (y)$

[15 Marks]

2017

15. Let
$$
x_1 = 2
$$
 and $x_{n+1} = \sqrt{x_n + 20}$, $n = 1, 2, 3, ...$ show that the sequence x_1, x_2, x_3 . is convergent.
\n16. Find the Superman and the infimum of $\frac{x}{\sin x}$ on the interval $\left(0, \frac{\pi}{2}\right)$.
\n17. Let $f(t) = \int_0^{\pi} [x] dx$ where $[x]$ denote the largest integer less than or equal to x
\n(i) Determine all the real numbers *t* at which *f* is continuous but not differentiable.
\n18. Let $\sum_{n=1}^{\infty} x_n$ be a conditionally convergent series of real numbers. Show that there is a real
\nthe series $\sum_{n=1}^{\infty} x_n$ that converges to 100.
\n19. For that the function $f : (0, \infty) \rightarrow R$ given by $f(x) = x^2 \sin \frac{1}{x}, 0 < x < \infty$ Show that there is a differentiable
\nfunction $g : R \rightarrow R$ that extends *f*
\n20. Two sequences $\{x_n\}$ and $\{y_n\}$ are defined inductively by the following:
\n $x_1 = \frac{1}{2}, y_1 = 1, x_n = \sqrt{x_{n+1}, y_{n+1}}, y_{n+2}, z_1, 4, \ldots, y_n = \frac{1}{2} \left(\frac{1}{x_n} + \frac{1}{y_{n-1}} \right), n = 2, 3, 4, ...$ and Prove that
\n $x_{n-1} < x_n < y_n < y_{n-1}, n = 2, 3, 4, ...$ and deduce that both the sequence converges to the same limit *l* where $\frac{1}{2} < l < 1$.
\n10 marks]
\n21. Show that the series $\sum_{n=1}^{\infty} \frac{f(y^{n+1})}{n+1}$ conditionally convergent (if you use any theorem (s) to show it then you
\nmust give a proof of that theorem(s).
\n22. Find the relative maximum minimum values of the function $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$ [15 marks]
\n23. Let $f : R \rightarrow R$

24. Test for convergence $\sum_{n=1}^{\infty}$ $(-1)^{n+1}$ $\begin{array}{cc} \begin{array}{c} 1 \\ 1 \end{array} \end{array}$ $\begin{array}{cc} \begin{array}{c} 1 \\ n \end{array} \end{array}$ (-1) 1 *n n n n* $\sum_{n=1}^{\infty}$ (1)ⁿ⁺ = $\begin{pmatrix} n \end{pmatrix}$ $\sum_{n=1}^{\infty}$ $\left(-1\right)^{n+1} \left(\frac{n}{n^2+1}\right)^{n}$ **[10 Marks]**

$$
\text{Is the function } f(x) = \begin{cases} \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n} \\ 0 & x = 0 \end{cases}
$$
\nRiemann Integrable? If yes, obtain the value of $\int_{0}^{1} f(x) dx$

[15 Marks]

[10 Marks]

[15 Marks]

[15 Marks]

26. Test the series of functions
$$
\sum_{n=1}^{\infty} \frac{nx}{1 + n^2 x^2}
$$
 for uniform convergence [15 Marks]

27. Find the absolute maximum and minimum values of the function $f(x,y) = x^2 + 3y^2 - y$ over the region $x^2 + 2y^2 \le 1$ **[15 Marks]**

2014

- 28. Test the convergence of the improper integral $\frac{1}{1} x^2 (1 + e^{-x})$ *dx* $x^2(1+e$ ∞ $\int_{1}^{1} \frac{dx}{x^2(1+e^{-x})}$
- 29. Integrate $|f(x)|$ 0 1 $\int_{a}^{b} f(x) dx$, where $f(x) = \begin{cases} 2x \sin \frac{1}{x} \cos \frac{1}{x}, x \in [0,1] \\ 0,1 \end{cases}$ $\left(x=0\right)$ $f(x) = \begin{cases} 2x \sin{\frac{1}{x}} \cos{\frac{1}{x}}, x \end{cases}$ *x* $=\left\{2x\sin\frac{1}{x}\cos\frac{1}{x}, x\in\left[0,1\right]\right\}$

25. Is the function

30. Obtain
$$
\frac{\partial^2 f(0,0)}{\partial x \partial y}
$$
 and $\frac{\partial^2 f(0,0)}{\partial y \partial x}$ for the function $f(x, y) = \begin{cases} xy(3x^2 - 2y^2) \\ x^2 + y^2 \end{cases}$, $(x, y) \neq (0,0)$
0, $(x, y) \neq (0,0)$

Also, discuss the continuity 2 *f x y* ∂ $\frac{\partial}{\partial x \partial y}$ and 2 *f* $y\partial x$ ∂ $\frac{\partial f}{\partial y \partial x}$ of at $(0,0)$

31. Find the minimum value of $x^2 + y^2 + z^2$ subject to the condition $xyz = a^3$ by the method of Lagrange multiplies. **[15 Marks]**

2013

32. Let $f(x) = \begin{cases} 1 & x \end{cases}$ 2 2 4 if $x \ge 0$ 2 2 if $x < 0$ 2 *x x x x* \int $\frac{x^2}{2} + 4$ if $x \ge 0$ − $\frac{-x^2}{2}+2$ if $x < 0$ $\overline{\mathfrak{l}}$ Is f Riemann integrable in the interval $[-1,2]$? Why? Does there exist a

 $function g$ such that $g'(x) = f(x)$? Justify your answer. **[10 Marks]**

- 33. Show that the series $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{2}$ $\frac{2}{1}$ $n+x^2$ 1 *n n x* $\sum_{n=0}^{\infty}$ $\left(-1\right)^{n-1}$ + $\sum \frac{(-1)^n}{2}$, is uniformly convergent but not absolutely for all real values of x [13 Marks]
- 34. Show that every open subset of *R* is countable union of disjoint open intervals **[14 Marks]**
- 35. Let $\left[x\right]$ denote the integer part of the real number x, i.e., if $n \leq x < n+1$ where n is an integer, then $\left[x\right] = n$. Is the function $f(x)$ = $\left[x\right]^{\!\!2}$ + 3 Riemann integrable in the function in $\left[-1,2\right]$? If not, explain why. If it is integrable, compute $\int \left\lfloor x \right\rfloor^2 + 3 \big| d$ $\frac{2}{\zeta}$ (r ζ) 1 $x \uparrow + 3 dx$ − $\int \left(\left[x \right]^{2} +$ **[10 Marks]**

36. Let,
$$
f_n(x) = \begin{cases} 0, & \text{if } x < \frac{1}{n+1} \\ \sin \frac{\pi}{x}, & \text{if } \frac{1}{n+1} \le x \le \frac{1}{n} \\ 0, & \text{if } x > \frac{1}{n} \end{cases}
$$
, Show that $f_n(x)$ converges to a continuous function but not

uniformly. **[12 Marks]**

37. Show that the series
$$
\sum_{n=1}^{\infty} \left(\frac{\pi}{\pi+1}\right)^n n^6
$$
 is convergent

38. Let
$$
f(x,y) = \begin{cases} \frac{(x+y)^2}{x^2+y^2}, & \text{if } (x,y) \neq (0,0) \\ 1, & \text{if } (x,y) = (0,0) \end{cases}
$$
 Show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (0,0) thought $f(x,y)$ is not

continuous at $(0,0)$.

- 39. Find the minimum distance of the line given by the planes $3x + 4y + 5z \neq 7$ and $x \neq z = 9$ and from the origin, by the method of Lagrange's multipliers. **Example 20 and 20 a**
- 40. Let $f(x)$ be differentiable on [0,1] such that $f(1) = f(0) = 0$ and $\int_0^1 f^2(x) dx = 1$.Prove that 0

$$
\int_{0}^{1} xf(x)f'(x)dx = -\frac{1}{2}
$$
 [15 Marks]

41. Give an example of a function $f(x)$, that is not Riemann integrable but $|f(x)|$ is Riemann integrable. Justify your answer **[20 Marks]**

2011

- 42. Let $S = (0,1)$ and f be defined by $f(x) = \frac{1}{x}$ *x* $=$ $\frac{1}{\pi}$ where $0 < x \leq 1$ (in R). Is f uniformly continuous on S ? Justify your answer. **[12 Marks]**
- 43. Let $f_n(x) = nx(1-x)^n, x \in [0,1]$ $f_n(x) = nx(1-x)^n, x \in [0,1]$. Examine the uniform convergence of $\{f_n(x)\}$ on $[0,1]$ **[15 Marks]**
- 44. Find the shortest distance from the origin (0,0) to the hyperbola $x^2 + 8xy + 7y^2 = 225$ **[15 Marks]**
- 45. Show that the series for which the sum of first *n* terms $f_n(x) = \frac{nx}{1 + n^2x^2}$, $0 \le x \le 1$ $\frac{1}{n^2x}$ $=\frac{nx}{(x-2)^2}, 0 \leq x \leq 1$ + cannot be differentiated

term-by-term at
$$
x = 0
$$
. What happens at $x \neq 0$?
46. Show that if $S(x) = \sum_{n=1}^{\infty} \frac{1}{n^3 + n^4 x^2}$, then its derivative $S'(x) = -2x \sum_{n=1}^{\infty} \frac{1}{n^2(1 + nx^2)^2}$, for

[15 Marks]

$(1 + nx^2)$ for all *x* **[20 Marks]**

2010

(0,0) . **[15 Marks]**

[12 Marks]

- 47. Discuss the convergence of the sequence $\{x_n\}$ where sin $n = \frac{1}{8}$ *X* $=\frac{\sin\left(\frac{\pi}{2}\right)}{2}$ [12 Marks]
- 48. Define $\{x_n\}$ by $x_1 = 5$ and $x_{n+1} = \sqrt{4+x_n}$ for $n>1$ Show that the sequence converges to $\frac{1+\sqrt{17}}{2}$ 2 $\left(1+\sqrt{17}\right)$ $\left(\frac{1+\sqrt{11}}{2}\right)$ **[12 Marks]**

 $\left(n\pi\right)$

n

49. Define the function
$$
f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}
$$
. Find $f'(x)$. Is $f'(x)$ continuous at $x = 0$? Justify your answer.

[15 Marks]

50. Consider the series 2 $\sum_{n=0}^{\infty} (1+x^2)^2$ *x x* ∞ $\Xi_0(1 +$ $\sum \frac{x}{(x-2)^2}$. Find the values of x for which it is convergent and also the sum function. Is

the converse uniform? Justify your answer. **Example 20 and 20**

51. Let $f_n(x) = x^n$ on $-1 < x \le 1$ for $n = 1, 2, \ldots$. Find the limit function. Is the convergence uniform? Justify your answer. **[15 Marks] [15 Marks]**

2009

- 52. State Roll's theorem. Use it to prove that between two roots of $e^x \cos x = 1$ there will be a root o $e^x \sin x = 1$ **[2+10=12 Marks]**
- 53. Let 1 if $x < 1$ 2 $f(x)$ $\frac{x}{2}+1$ if $1 \le x < 2$ 1 if 2 2 *x x* $f(x)$ $\left\{\frac{x}{2}+1\right\}$ if $1 \leq x$ *x x* $\left|\frac{|x|}{2}+1\right|$ if $x<1$ $\left| \right|$ $\frac{x}{2}+1$ if $1 \leq x < 2$ $\left| \right|$ $\left[-\frac{|x|}{2}+1 \text{ if } 2 \leq x\right]$ What are the points of discontinuity of *f*, if any? What are the points where *f*

is not differentiable, if any? Justify yours answer. **[12 Marks]**

- is not differentiable, if any? Justify yours answer.

54. Show that the series $\left(\frac{1}{3}\right)^2 + \left(\frac{1.4}{3.6}\right)^2 + \dots + \left(\frac{1.4.7 \dots (3n-2)}{3.6.9}\right)^2 + \dots$ $\left(\frac{1}{3}\right)^2 + \left(\frac{1.4}{3.6}\right)^2 + \dots + \left(\frac{1.4.7 \dots (3n-1)}{3.6.9 \dots 3}\right)$ *n* f any? Justify yours answer.
 $\left(\frac{1}{2}\right)^2 + \left(\frac{1.4}{4}\right)^2 + \dots + \left(\frac{1.4.7\dots(3n-2)}{4}\right)^2 + \dots$ $\left(\frac{1}{3}\right)^2 + \left(\frac{1.4}{3.6}\right)^2 + \dots + \left(\frac{1.4.7 \dots (3n-2)}{3.6.9 \dots 3n}\right)^2 + \dots$ converges **[15 Marks]**
- 55. Show that if $f:[a,b] \to \mathbb{R}$ is a continuous function then $f([a,b]) = [c,d]$ form some real numbers c and d, $c \leq d$. **[15 Marks]**
- 56. Show that: $2\frac{2}{r^2}$ ∞ n^2 $\sum_{n=1}^{\infty} \frac{1}{n^4 + x^4} = \sum_{n=1}^{\infty} \frac{1}{n^4}$ lim $lim_{x\to 1}$ $lim_{n\to 1}$ $n^4 + x^4$ $lim_{n=1}$ $n^4 + 1$ n^2x^2 $\sum_{n=1}^{\infty}$ *n* $\frac{n}{n^4 + x^4} = \sum_{n=1}^{\infty} \frac{1}{n}$ ∞ n^2x^2 ∞ $\lim_{n\to\infty}\sum_{n=1}^{\infty}\frac{n^2x^2}{n^4+x^4}=\sum_{n=1}^{\infty}\frac{n^2}{n^4+1}$ Justify all steps of your answer by quoting the theorems you are using **[15 Marks]**

57. Show that a bounded infinite subset *R* must have a limit point **[15 Marks]**

2008

58. (i) For
$$
x > 0
$$
, show $\frac{x}{1+x} < log(1+x) < x$ [6 Marks]
\n(ii) Let $T = \left\{ \frac{1}{x}, n \in N \right\} \cup \left\{ 1 + \frac{3}{x}, n \in N \right\} \cup \left\{ 6 - \frac{1}{x}, n \in N \right\}$. Find derived set T of T . Also find

(i) For
$$
x > 0
$$
, show $\frac{d}{1+x} < log(1+x) < x$ [6 Marks]
\n(ii) Let $T = \left\{\frac{1}{n}, n \in N\right\} \cup \left\{1 + \frac{3}{2n}, n \in N\right\} \cup \left\{6 - \frac{1}{3n}, n \in N\right\}$. Find derived set T of T . Also find
\nSupremum of T and greatest number of T . [6 Marks]

Reputed Institute for Maths Optional of Civil Services UPSC, IAS, IFoS (IFS) and State PCS Exams *Page* 6

59. $f: R \to R$ is continuous and $f(x + y) = f(x) + f(y)$, for all $x, y \in R$ then show that $f(x) = xf(1)$ for all $x \in R$. **[12 Marks]**

60. Discuss the convergence of the series
$$
\frac{x}{2} + \frac{1.3}{2.4}x^2 + \frac{1.3.5}{2.4.6}x^3 + \dots, x > 0
$$
. [15 Marks]

61. Show that the series
$$
\sum \frac{1}{n(n+1)}
$$
 is equivalent to
$$
\frac{1}{2} \prod_{n=1}^{\infty} \left(1 + \frac{1}{n^2 - 1}\right)
$$
 [15 Marks]

62. Let f be a continuous function on $[0,1]$. Using first Mean Value theorem on Integration, prove that

$$
\lim_{n \to \infty} \int_{0}^{1} \frac{n f(x)}{1 + n^2 x^2} dx = \frac{\pi}{2} f(0)
$$
 [15 Marks]

63. (i) Prove that the sets $A = [0,1]$, $B = (0,1)$ are equivalent sets. **[6 Marks]**

(ii) Prove that
$$
\frac{\tan x}{x} > \frac{x}{\sin x}, x \in \left(0, \frac{\pi}{2}\right)
$$

2007

64. Show that the function given by $f(x,y) = \begin{cases} \frac{xy}{x^2 + 2y^2} & (x, y) \neq (0,0) \\ 0 & (x, y) = (0,0) \end{cases}$ $\frac{xy}{\sqrt{2-x^2}}$ (x, y) $f(x,y) = \begin{cases} \frac{xy}{x^2 + 2y} \end{cases}$ *x y* $\frac{xy}{(x^2+9)^2}$ $(x,y) \neq$ $=\left\{ x^{2}+ \right\}$ $\begin{pmatrix} 0 & x, y \end{pmatrix}$ = is not continuous at $(0,0)$ but its partial

derivatives f_x and f_y exists at $(0,0)$

- 65. Using Lagrange's mean value theorem, show that $|\cos b \cos a| \le |b a|$ **[12 Marks]**
- 66. Given a positive real number a and any natural number n , prove that there exists one and only one positive real number ξ such that $\xi^n = a$ **[20 Marks]**
- 67. Find the volume of the solid in the first octant bounded by the paraboloid $z = 36 4x^2 9y^2$ **[20 Marks]**
- 68. Rearrange the series $\sum_{n=1}^{\infty} (-1)^{n+1}$ 1 $(1)^{n+1}$ ¹ $\sum_{n=1}^{n}$ $\binom{n}{n}$ $\sum_{n=1}^{\infty}$ $\binom{n}{n}$ $\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{1}{n}$ to converge to 1 **[20 Marks]**

2006

69. Examine the convergence of $\mathbf 1$ $\int_0^1 x^{1/2} (1-x)^{1/2}$ *dx* $\int_{0}^{\pi} \frac{dx}{x^{1/2}(1-x)}$

[12 Marks]

[20 Marks]

[9 Marks]

[12 Marks]

- 70. Prove that the function f defined by $f(x) = \begin{cases} 1 & \text{when } x \text{ is rational} \\ -1 & \text{when } x \text{ is irrational} \end{cases}$ $f(x) = \begin{cases} 1 & \text{when } x \\ -1 & \text{when } x \end{cases}$ $=\bigg\{$ $\begin{bmatrix} 12 \\ -1 \end{bmatrix}$ when x is irrational is nowhere continuous. **[12 Marks]**
- 71. A twice differentiable function f is such that $f(a) = f(b) = 0$ and $f(c) > 0$ for $a < c < b$. Prove that there is at least one value ξ , $a < \zeta < b$ for which $f''(\zeta) < 0$. (20 Marks)

72. Show that the function given by
$$
f(x,y) = \begin{cases} \frac{x^3 + 2y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}
$$
 (i) is continuous at (0,0) (ii) possesses

partial derivative $f_x(0,0)$ and $f_y(0,0)$

73. Find the volume of the ellipsoid 2 a^2 a^2 $\frac{y}{2} + \frac{y}{b^2} + \frac{z}{c^2} = 1$ x^2 y^2 z a^2 b^2 c $+\frac{y}{12} + \frac{z}{2} = 1$ **[20 Marks]**

- 74. *u*, *v*, *w* are the roots of the equation in λ and $\frac{x}{\lambda} + \frac{y}{\lambda} + \frac{z}{\lambda} = 1$, $\frac{c}{a + \lambda} + \frac{b}{b + \lambda} + \frac{c}{c + \lambda} =$ $+\frac{y}{1} + \frac{z}{1} = 1,$ $\frac{x}{x+\lambda}+\frac{y}{b+\lambda}+\frac{z}{c+\lambda}=1,$ evaluate $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ (u,v,w) $, y,$ $, v,$ *x y z* u, v, w \hat{c} \hat{o} **[12 Marks]**
- 75. Evaluate $\iiint \ln(x+y+z) dx dy dz$ The integral being extended over all positive values of x, y, z such that $x + y + z \leq 1$ **[12 Marks]**
- 76. f ' and g ' exist for every $x \in [a,b]$ and if $g'(x)$ does not vanish anywhere (a,b) , show that there exists c in (a,b) such that $\frac{f(c)-f(a)}{f(a)-f(a)} = \frac{f'(c)}{f(a)}$ $\overline{(b) - g(c)} - \frac{1}{g'(c)}$ $f(c) - f(a) - f'(c)$ $\frac{g(b)-g(c)}{g'(c)} - \frac{g'(c)}{g'(c)}$ $\frac{-f(a)}{a}$ − **[30 Marks]**
- 77. Show that $\int e^{-t}t^{n-1}$ 0 $\int\limits_0^\infty e^{-t}t^{n-1}\,\,dt\,$ is an improper integral which converges for $\,n\,{>}\,0$

a

2004

- **78.** Show that the function $f(x)$ defined as: $f(x) = \frac{1}{2^n}$, $\frac{1}{2^{n+1}} \le x \le \frac{1}{2^n}$, $n \ge 0,1,2,...$ $\frac{1}{2^n}, \frac{1}{2^{n+1}} \leq x \leq \frac{1}{2^n}$ $f(x) = \frac{1}{2^n}, \frac{1}{2^{n+1}} \le x \le \frac{1}{2^n}, n = 0, 1, 2, ...,$ and $f(0) = 0$ is integrable in [0,1], although it has an infinite number of points of discontinuity. Show that $\int_{0}^{1} f(x) dx = \frac{2}{3}$ $\int_{0}^{x} f(x)dx = \frac{2}{3}$ **[12 Marks]**
- 79. Show that the function $f(x)$ defined on by: $f(x) = \begin{cases} x & \text{when } x \text{ is irrational} \\ x & \text{when } x \text{ is rational} \end{cases}$ $=\begin{cases} x & \text{when } x \\ -x & \text{when } x \end{cases}$ $\begin{cases} x & \text{when } x \text{ is rational} \\ -x & \text{when } x \text{ is rational} \end{cases}$ is continuous only at $x = 0$

[12 Marks]

0

[30 Marks]

80. (x, y, z) be the lengths of perpendiculars drawn from any interior point P of triangle ABC on the sides BC, CA and AB respectively, then find the minimum value of $x^2 + y^2 + z^2$, the sides of the triangle ABC being a,b,c . a, b, c , (20 Marks]

81. Find the volume bounded by the paraboloid $x^2 + y^2 = az$, the cylinder $x^2 + y^2 = 2ay$ and the plane $z = 0$

[20 Marks]

82. Let $f(x) \ge g(x)$ for every x in [a,b] and f and g are both bounded and Riemann integrable on [a,b]. At a point $c \in [a, b]$, let f and g be continuous and $f(c) > g(c)$ then prove that $\int_a^b f(x) dx > \int_a^b g(x)$ $\int_a^b f(x) \, dx > \int_a^b g(x) \, dx$ and hence show that 3 2 $1 - \frac{b}{\int x^3 \cos 5x}$ 1 $\frac{2}{2} < \int_{a} \frac{2}{2+x^2} dx < \frac{1}{2}$ *b* $\frac{x^3 \cos 5x}{x}$ dx $-\frac{1}{2} < \int_{a}^{\infty} \frac{x^3 \cos 5x}{2+x^2} dx < \frac{1}{2}$ **[20 Marks]**

2003

- 83. Let a be a positive real number and $\{x_n\}$ sequence of rational numbers such that $\lim_{n\to\infty}x_n=0$. Show that $\lim_{n\to\infty} ax_n = 1$ **[12 Marks]**
- 84. If a continuous function of x satisfies the functional equation $f(x+y) = f(x) + f(y)$ then show that $f(x) = \alpha x$ where α is a constant. **[12 Marks]**

85. Show that the maximum value of $x^2y^2z^2$ subject to condition $x^2 + y^2 + z^2 = c^2$ is 2 27 *c* . Interpret the result **[20 Marks]**

- 86. The axes of two equal cylinders intersect at right angles. If a be their radius, then find the volume common to the cylinder by the method of multiple integrals. **[20 Marks]**
- 87. Show that $\int \frac{dx}{1 + x^2 \sin^2 x}$ $\frac{J}{0}$ 1 *dx* $x^2 sin^2 x$ ∞ $\int_{0}^{1} \frac{dx}{1+x^2\sin^2 x}$ is divergent **[20 Marks]**

2002

98. Given that the terms of a sequence $\{a_n\}$ are such that each a_k , $k \leq 3$, is the arithmetic mean of its two immediately preceding terms. Show that the sequence converges. Also find the limit of the sequence.

[12 Marks]

- 99. Determine the values of x for which the infinite product $\prod_{n=0}$ $\left(1+\frac{1}{x^2}\right)$ $\prod_{n=0}^{\infty} \left(1 + \frac{1}{x^{2n}}\right)$ ∞ = $\prod_{n=0}^{\infty}\left(1+\frac{1}{x^{2n}}\right)$ converges absolutely. Find its value whenever it converges. **[12 Marks]**
- 100. Suppose f is twice differentiable real valued function in $(0, \infty)$ and $M_{0,}M_1$ and M_{2} the least upper bounds of $f(x)|,|f'(x)|$ and $|f''(x)|$ respectively in $(0,\infty)$. Prove for each $x>0,h>0$ that

$$
f'(x)\frac{1}{2h}\Big[f(x+2h)-f(x)\Big]-hf'(u) \text{ for some } u \in (x, x+2h) \text{ . Hence show that } M_1^2 \le 4M_0M_2. \tag{20 Marks}
$$

101. Evaluate $\iint (x^3 dy dz + x^2 y dz dx + x^2 z dx dy)$ $\iint_S (x^3 dydz + x^2 ydzdx + x^2 zdxdy)$ by transforming into triple integral where S is the closed surface

formed by the cylinder $x^2+y^2=a^2, 0\le z\le b$ and the circular disc $x^2+y^2\le a^2, z=0$ and $x^2+y^2\le a^2, z=b$ **[20 Marks]**

1999

- 102. Let A be a subset of the metric space (M, ρ) . If (A, ρ) is compact, then show that A is a closed subset of (M, ρ) **[20 Marks]**
- 103. A sequence $\{S_n\}$ is defined by the recursion formula $S_{n+1}=\sqrt{3S_n}$, $S_1=1$. Does this sequence converge? If so, find $\lim S_n$ **[20 Marks]**
- 1
| 104. Test for convergence the integral 0 $\log^{\frac{1}{2}}$ *q* x^p \log $\frac{1}{x}$ $\frac{1}{x}$ $\int\limits_0^1 x^p \bigg(\log\frac{1}{x}\bigg)^{\!q}\,.$ **[20 Marks]**
- 105. Find the shortest distance from the origin to the hyperbola $x^2 + 8xy + 7y^2 = 225$, $z = 0$ **[20 Marks]**
- **106.** Show that the double integral $\iint_{R} \frac{x}{(x+y)^3}$ $\frac{x-y}{y}$ *dxdy* $x + y$ − $\iint\limits_R \frac{x-y}{(x+y)^3} dx dy$ does not exist over $R = [0,1;0,1]$ **[20 Marks]**
- 107. Verify the Gauss divergence theorem for $\overline{F}=4x\hat{e}_x\overline{-2y^2}\hat{e}_y+z^2\hat{e}_z$ taken over the region bounded by $x^2 + y^2 = 4$, $z = 0$ and $z = 3$ where $\hat{e}_x, \hat{e}_y, \hat{e}_z$ are unit vectors along $x -$, $y -$ and $z -$ directions respectively.

[20 Marks]

X E−) **[20 Marks]**

1998

- 108. Let X be a metric space and $E \subset X$. Show that
	- (i) Interior of E is the largest open set contained in E
	- (ii) Boundary of E =(closure of E) \bigcap (closure of
- 109. Let (X,d) and (Y,e) be metric spaces with X compact and $f:X\to Y$ continuous. Show that f is uniformly continuous. **[20 Marks]**
- 110. Show that the function $f(x,y) = 2x^4 3x^2y + y^2$ has $(0,0)$ as the only critical point but the function neither has a minima nor maxima at $(0,0)$ **[20 Marks]**
- 111. Test the convergence of the integral 0 $e^{-ax}\frac{\sin x}{x} dx, \ \ a \ge 0$ $\int e^{-ax} \frac{\sin x}{x} dx, \ \ a \geq$ **[20 Marks]**
- **112.** Test the series $\sum_{n=1}^{\infty} \frac{x}{(n+x^2)^2}$ *x n x* ∞ $\sum_{n=1}^{\infty} \frac{x}{(n+x^2)^2}$ for uniform convergence. **[20 Marks]**
- 113. Let $f(x) = x$ and $g(x) = x^2$. Does \int_0^1 0 *fog* exist? If it exists then find its value **[20 Marks]**

114. Show that a non-empty set P in R^n each of whose points is a limit-point is uncountable. **[20 Marks]**

- 115. Show that $2h^2c^2$ D 6 $\iiint xyz \ dxdydz = \frac{a^2b^2c^2}{6}$ where domain D is given by 2 x^2 z^2 $\frac{1}{2} + \frac{y}{b^2} + \frac{z}{c^2} \le 1$ x^2 y^2 z a^2 b^2 c $+\frac{y}{2}+\frac{z}{2} \leq 1$ **[20 Marks] 116.** If $u = \sin^{-1}\left[\left(x^2 + y^2\right)^{1/5}\right]$, Prove that a^2 b^2 c^2
 a^2 b^2 c^2
 a^2 b^2 c^2 $\frac{u}{2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{2}{28}$ $2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{2}{25} \tan u (2 \tan^2 u - 3)$ $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{2}{95} \tan u (2 \tan^2 u)$ $\frac{\partial^2 u}{\partial x^2}$ + 2xy $\frac{\partial^2 u}{\partial x \partial y}$ + y² $\frac{\partial^2 u}{\partial y}$ $\frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{2}{25} \tan u (2 \tan^2 u - 3)$ $\frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{2}{2}$ **[20 Marks] 1996** 117. Let F be the set of all real valued bounded continuous functions defined on the closed interval $[0,1]$. Let d be a mapping of $F \times F$ into R , the set of real numbers, defined by 1 0 $d(f,g) = \int |f(x) - g(x)| dx \ \forall f, g \in F$. Verify that d is a metric for \emph{F} **[20 Marks]** 118. Prove that a compact set in a metric space is a closed set. **[20 Marks]** 119. Let $C[a,b]$ denote the set of all functions f on $[a,b]$ which have continuous derivatives at all points of Let $C[a,b]$ denote the set of all functions f on $[a,b]$ which have continuous derivatives at all points of $I = [a,b]$. For $f, g \in C[a,b]$ define $d(f,g) = |f(a) - g(b)| + \sup\{|f'(x) - g'(x)|, x \in I\}$. Show that the space $(C[a,b],d)$ is a complete. **[20 Marks]** 120. A function f is defined in the interval (a,b) as follows: $\left[pq^{-1}\right]$ ² when $r = pq^{-1}$ ³ when $r = (pq^{-1})^{1/2}$ $f(x) = \begin{cases} q^{-2} & \text{when} \\ 3 & \text{otherwise} \end{cases}$ when q^{-2} when $x = pq$ *f x* q^{-3} when $x = \left(pq\right)$ μ ⁻² when $r = n\sigma^{-1}$ $r = \left(\frac{1}{2}a^{-1}\right)^{1/2}$ $=\begin{cases} q^{-2} & \text{when } x = \end{cases}$ $\left[q^{-3} \right]$ when $x =$ where p,q are relatively prime integers; $f(x) = 0$, for all other values of x . Is f Riemann integrable? Justify your answer. **[20 Marks]** 121. Test for uniform convergence, the series $2n - 1$ x_1^2 1+ x^2 2 1 n_{α}^2 2n $\sum_{n=1}^{\infty} 1 + x^{2n}$ *x x* ∞ $\Omega_n \sim 2n \Xi_1$ 1+ \sum **[20 Marks]** 122. Evaluate $\int \sin x \sin^{-1} (\sin x \sin y)$ $\frac{12\pi}{2}$ $\begin{smallmatrix} 1 & 1 \ 0 & 0 \end{smallmatrix}$ $\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin x \sin^{-1}(\sin x \sin y) dx dy$ $\int \frac{12\pi}{2} \sin x$ **[20 Marks] 1995** 123. Let K and \overline{F} be nonempty disjoint closed subjects of R^2 . If K is bounded, show that there exists δ > 0 such that $d(x,y) \geq \delta$ for $x \in K$ and $y \in F$ where $d(x,y)$ is the usual distance between x and *y* . **[20 Marks]** 124. Let f be a continuous real function on R such that f maps open interval into open intervals. Prove that f is monotonic. **[20 Marks]**
- 125. Let $c_n \geq 0$ for all positive integers n such that is convergent. Suppose $\{S_n\}$ is a sequence of distinct points in (a,b) For $x \in [a,b]$, define $a(x) = \sum c_n \{n : x > S_n\}$. Prove that a is an increasing function. If f a continuous

real function on
$$
[a,b]
$$
, show that $\int_a^b f d\alpha = \sum c_n f(S_n)$ [20 Marks]

Reputed Institute for Maths Optional of Civil Services UPSC, IAS, IFoS (IFS) and State PCS Exams *Page* 11

- 126. Suppose f maps an open ball $U \subset R^n$ into R^m and f is differentiable on U . Suppose there exists a real number $M > 0$ such that $||f(x)|| \le M \ \ \forall x \in U$. Prove that $|f(b)-f(a)| \le M|b-a| \ \ \forall a,b \in U$ **[20 Marks]**
- 127. Find and classify the extreme values of the function $f(x, y) = x^2 + y^2 + x + y + xy$ **[20 Marks]**
- 128. Suppose α is real number not equals to $n\pi$ for any integer n . Prove that

$$
\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2 + 2xy\cos\alpha + y^2)} dx dy = \frac{\alpha}{2\sin\alpha}
$$
 [20 Marks]

- 129. Examine the (i) absolute convergence (ii) uniform convergence of the series $(1-x) + x(1-x) + x^2(1-x) + ...$ in $[-c,1], 0 < c < 1$ **[20 Marks]**
- 130. Prove that $S(x) = \sum_{n=0}^{\infty} \frac{1}{n^2 + n^2} a^2$ $S(x) = \sum_{n} \frac{1}{n^p + n^q x^2}, p > 1$ $\frac{1}{n^p + n^q x}$ $=\sum \frac{1}{\sqrt{p^2+q^2}}$, $p>1$ is + \sum ¹/₂, $\frac{1}{(n-2)^2}$, $p > 1$ is uniformly convergent for all values of x and can be differentiate term by term if $q < 3p < 2$ **[20 Marks]**
- 131. Let the function f be defined on [0,1] by the condition $f(x) = 2rx$ when $\frac{1}{x} < x < \frac{1}{x}$, $r > 0$ 1 \overline{x} ¹, *r* $r+1$ γ $\langle x \rangle^{\frac{1}{2}}, r > 0$ $\frac{1}{r+1}$ < $x < \frac{z}{r}$, $r > 0$ Show that f is

[20 Marks]

Riemann integrable in [0,1] and
$$
\int_{0}^{1} f(x) dx = \frac{\pi^2}{6}
$$

132. By means of substitution $x + y + z = u$, $y + z = uv$, $z = uvw$ evaluate $\iiint (x + y + z)^n xyz \, dxdydz$ taken over the volume bounded by $x = 0, y = 0, z = 0, x + y + z = 1$ **[20 Marks]**

1993

133. Examine for Riemann integrability over
$$
[0,2]
$$
 of the function defined in $[0,2]$ by

Example 10.21 of the function defined in [0,2] by

\n
$$
f(x) = \begin{cases} x + x^2, & \text{for rational values of } x \\ x^2 + x^3, & \text{for irrational values of } x \end{cases}
$$
\n[20 Marks]

134. Prove that 0 sin*x dx x* ∞ $\int \frac{\sinh x}{x} dx$ converges and conditionally converges. **[20 Marks]**

135. Evaluate $\iiint \frac{dxdydz}{x+y+z+1}$ $\iiint \frac{dx dy dz}{x + y + z + 1}$ over the volume bounded by the coordinate planes and the plane $x + y + z = 1$ **[20 Marks]**

1992

- 136. If we metrize the space of functions continuous on [a, b] by taking $p(x, y) = \int_0^b [x(t) y(t)]^2$ $p(x,y) = \sqrt{\int_a^b [x(t) - y(t)]^2} dt$ then show that the resulting metric space is NOT complete **[20 Marks]** that the resulting metric space is NOT complete **[20 Marks]**
137. Examine $2xyz - 4zx - 2yz + x^2 + y^2 + z^2 - 2x - 4y - 4z$ for extreme values **[20 Marks]**
-

138. If
$$
U_n = \frac{1+nx}{ne^{nx}} - \frac{1+(n+1)x}{(n+1)e^{(n+1)x}}
$$
, $0 < x < 1$ Prove that $\frac{d}{dx} \sum U_n = \sum \frac{d}{dx} U_n$ Is the series uniformly convergent
in (0,1)? Justify your claim. [20 Marks]

[20 Marks]

- 139. Find the upper and lower Riemann integral for the function defined in the interval [0,1] as follows
	- $\sqrt{1-x^2}$ when x is rational $1-x$ when x is irrational
 $1-x$ when x is irrational $\frac{1}{x^2}$ when *x* $\begin{array}{cc} -x & \text{when } x \\ x & \text{when } x \end{array}$ $\sqrt{1-}$ $\left(1 - \right)$ and show that is NOT Riemann integrable in $[0,1]$. [0,1]. **[20 Marks]**
- 140. Discuss the convergence or divergence of $\int_{0}^{\infty} \frac{x}{1 + x\alpha \sin^2 x}$ $\frac{x}{1 + x\alpha \sin^2 x} dx, \ \alpha > \beta > 0$ $\frac{x^{\beta}}{x \alpha \sin^2 x} dx$ $\frac{x^{\beta}}{\alpha \sin^2 x}dx, \ \alpha > \beta > 0$ $\int_{0}^{\infty} \frac{x^{\beta}}{x^{\beta}} dx, \alpha > \beta > 0$ \int_{0}^{1}
- 141. Evaluate $\frac{2h^2-h^2r^2-a^2y^2}{h^2}$ $\frac{a^2b^2 - b^2x^2 - a^2y^2}{a^2b^2 + b^2x^2 + a^2y^2} dxdy$ $rac{a^2b^2 + b^2x^2 + a^2y}{a^2b^2 + b^2x^2 + a^2y}$ $-\frac{b^2x^2-a^2}{a^2}$ $\iint \sqrt{\frac{a^2b^2 + b^2x^2 + a^2y^2}{a^2b^2 + b^2x^2 + a^2y^2}} dxdy$ over the positive quadrant of the ellipse 2 2 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a^2 *b* $+\frac{v}{2}$ = **[20 Marks]**